Claim Missing Document
Check
Articles

Found 23 Documents
Search

Web-based Monitoring System for Power Electronics Devices on Off-grid Solar Power Generator Amirul Luthfi; Eka Putra Waldi; Darmawan Darmawan; Baharudin Baharudin; Budi Sunaryo
JURNAL NASIONAL TEKNIK ELEKTRO Vol 10, No 1: March 2021
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (310.639 KB) | DOI: 10.25077/jnte.v10n1.851.2021

Abstract

Power electronic devices are the main component of the solar power generation system. This study proposes a web-based monitoring system which presents power electronic performance parameter in a real-time across an internet connection. The investigation takes ACS712 and PZEM-004T for the power converter performance measuring and Arduino Mega 2560 with an ethernet shield for data acquisition and transmission. This paper describes the schematic design of the hardware and also explains the software work-flow and structure. The test and calibration on the sensor's voltage and current to standard digital multi-meter Tektronix DMM4050 show the sensor able to accurately read the converter performance parameter and meet the standard IEC-61724. The functionality test on the web-based information system indicates the designed user interface to present the power electronic performance parameter of the solar power generator.Keywords: Monitoring System, Power Electronics and Solar Power
A leakage current estimation based on thermal image of polymer insulator Darwison Darwison; Syukri Arief; Hairul Abral; Ariadi Hazmi; M. H. Ahmad; Eka Putra Waldi; Rudy Fernandez
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 3: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i3.pp1096-1106

Abstract

Polymer insulators tend to fail because of the climatic and environmental conditions. The failure occurs when the surface of insulator is contaminated by sea salt or cement dust which lead to partial discharge (PD). Leakage currents will increase by PD that causes deterioration of insulation. To predict the insulation failures, an  adaptive neurofuzzy inference system (ANFIS) method using initial color detection processes are proposed to estimate the leakage currents based on the polymer insulator thermal images (infrared signature). In this study, the sodium chloride and kaolin are used as pollutants of the polymer insulator according to IEC 60507 standards. Then, the insulator is tested in the laboratory using AC high voltage applied at 18 kV where the temperature detection is controlled at 26° C and 70% RH (relative humidity). The percentage of colors (Red, Yellow, and Blue) from the thermal image is measured using the color detection method. Correspond to the color percentage, the ANFIS method predicts leakage currents from polymer insulators. Furthermore, this system interprets measured data from insulators that need to be categorized as Safe, Need Maintenance or Harmful. The final application of the system can be a non-contact tool to predict the polymer insulators used by technicians in the field.
Penghilangan Mikroorganisme dalam Air Minum dengan Dielectric Barrier Discharge Ariadi Hazmi; Reni Desmiarti; Eka Putra Waldi; Arief Hadiwibowo; . Darwison
Jurnal Rekayasa Elektrika Vol 10, No 1 (2012)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.425 KB) | DOI: 10.17529/jre.v10i1.143

Abstract

Microorganisms such as Escherichia coli in water are a component that is difficult to remove in conventional water treatment systems. Several systems have been implemented to reduce levels of microorganisms is the use of disinfectants, the membrane filtration and activated carbon absorption. These systems have several weaknesses, so that not all microorganisms can be removed from drinking water. The plasma system is an applicable technology for removing organic compounds and microorganisms in drinking water. By creating plasma in water will produce several of active species such as OH-, H+, O3 and H2O2 that has a high oxidation potential, decompose organic compounds and kill microorganisms in the water significantly. This paper will describe the removal of microorganisms in drinking water using a plasma system by the method of dielectric barrier discharge (DBD ). The results howed that the pH of drinking water produced in the range 6.5 to 7.3. The higher voltage causes the higher the conductivity, temperature and ORP water. Removal efficiency for the content of microorganisms Coli Fecal and Coliform in the range 99.2 to 100% after water was injected voltage of 13-17 kV for 10 minutes.