Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Informatika

Impelementasi Deep Learning untuk Optimasi Slump Menggunakan Convolutional Neural Network Pada PT. Handaru Wijaya Mulya Pandowo, Hedi; Kusumaningrum, Dian; Amir, Vaisal
Jurnal Informatika Vol 9, No 1 (2022): April 2022
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (212.272 KB) | DOI: 10.31294/inf.v9i1.11713

Abstract

Deep Learning adalah sebuah bidang keilmuan baru dalam bidang Machine Learning yang akhir-akhir ini berkembang karena perkembangan teknologi GPU accelaration. Deep Learning memiliki kemampuan yang sangat baik dalam visi komputer. Salah satunya adalah pada kasus klasifikasi objek pada citra. Dengan mengimplementasikan salah satu metode machine learning yang dapat digunakan untuk klasifikasi citra objek yaitu Convolutional Neral Network (CNN). Metode CNN terdiri dari dua tahap. Tahap pertama adalah klasifikasi citra menggunakan feedforward. Tahap kedua merupakan tahap pembelajaran dengan metode backpropagation. Sebelum dilakukan klasifikasi, terlebih dahulu dilakukan praproses dengan metode wrapping dan cropping untuk memfokuskan objek yang akan diklasifikasi. Selanjutnya dilakukan training menggunakan metode feedforward dan backpropagation. Terakhir adalah tahap klasifikasi menggunakan metode feedforward dengan bobot dan bias yang diperbarui. Sehingga dapat disimpulkan bahwa metode CNN yang digunakan pada penelitian ini mampu melakukan klasifikasi dengan baik. Hasil uji-coba dari metode dan algoritma yang dikembangkan menunjukan bahwa pengukuran karakteristik tekstur secara global dalam satu kesatuan citra menunjukan hasilyang lebih baik dari model pengukuran secara lokal. Analisis global pada fitur contrast menunjukkan bahwa semakin tinggi kuat tekan beton, nilai contrast makin kecil yang berarti tekstur citra beton makin halus. Fitur energy dapat digunakan untuk membedakan slump pada beton dengan kuat tekan K-125, K-150, K-250 dan K-300