Claim Missing Document
Check
Articles

Found 7 Documents
Search

MODIFIKASI CYLINDER HEAD DAN INJEKSI GAS HHO TERHADAP PERFORMA MESIN 4 LANGKAH 1 SILINDER Indah Puspitasari
Jurnal Teknologi Terpadu Vol 8, No 1 (2020): JTT (Jurnal Teknologi Terpadu)
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32487/jtt.v8i1.753

Abstract

Kendaraan yang high performance dan irit bahan bakar dapat dihasilkan dari memodifikasi mesin. Tujuan penelitian adalah memodifikasi intake dan exhaust cylinder head  menggunakan bahan bakar pertalite dengan penambahan gas HHO (Hidrogen Hidrogen Oksigen), kemudian menganalisa pengaruhnya terhadap performa mesin. Dengan memperbesar diameter intake dan exhaust menjadi 28.35 mm dari ukuran standar 26 mm (intake) dan 26.5 mm (exhaust). Kemudian menambahkan dimple pada intake dengan jarak berdempetan (variasi 1) dan berjarak 1 mm (variasi 2). Pengujian performa dilakukan dengan dynotest. Berdasarkan pengujian, variasi 1 memiliki performa lebih baik dibanding standar. Daya maksimum standar yaitu 18.2 hp putaran 6690 rpm, daya terendah yaitu 7.8 hp putaran 10.000 rpm. Daya maksimum variasi 1 yaitu 18.9 hp putaran 7175 rpm, daya terendah yaitu 9.4 hp putaran 6240 rpm. Torsi maksimum standar yaitu 19.24 N.m putaran 6671 rpm, torsi terendah yaitu 5.49 N.m putaran 10000 rpm. Torsi maksimum variasi 1 yaitu 18.8 putaran 7133 rpm, torsi terendah yaitu 17.38 N.m putaran 10000 rpm. Dari hasil penelitian diketahui bahwa mesin modifikasi memiliki kestabilan performa lebih baik dibandingkan mesin standar, disebabkan bahan bakar yang terendap pada dimple namun performa puncak mesin modifikasi tidak lebih baik dari mesin standar dikarenakan suplai bahan bakar yang sama dari karburator.
PURIFIKASI BIOGAS BERBASIS ABSORBENT ZEOLIT DIAKTIVASI KOH, DAN NAOH TERHADAP KUALITAS BIOGAS Farid Majedi; Agus Choirul Arifin; Indah Puspitasari; Shofyan Dwi Saputro; Septian Nurfaranto
Jurnal Teknologi Vol 14, No 1 (2022): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.14.1.55-60

Abstract

Fossil fuel reserves are increasingly depleting and non-renewable. The choice of utilizing alternative energy sources that are renewable and environmentally friendly is a very smart thing to do. Biogas is a renewable energy and is environmentally friendly and inexpensive. The element CO2 can interfere with the combustion process. To increase the quality of biogas, it is possible to reduce the interfering CO2 element in the process. Purification is one way to purify the CO2 content of biogas. Burning. In this study, biogas purification was carried out by absorbing carbon dioxide (CO2) using zeolite which was activated by heat treatment of 300oC and Potassium Hydroxide (KOH) and Sodium Hydroxide (NaOH) solution, namely by varying the flow rate of biogas entering the purifier. The test was carried out on 4 variables, namely non-purified biogas, at a rate of 3 l/m, a rate of 5 l/m, and a rate of 7 l/m. Based on this study, the results obtained, the greater the flow rate of biogas, the lower the CO2 content and the higher the CH4 content. The lowest CO2 content at variablel 5 L/minute was 2952.78 ppm. The highest content of CH4 is 45845.25 ppm at 7 L/minute. The best condition of this research is the flow speed variable of 7 L/min with CH4 and CO2 content of 45845.25 ppm and 2967 ppm.
UJI PERFORMA MOTOR MATIC 110 CC DENGAN KONSEP BI-FUEL (GASOLINE-LPG) Achmad Aminudin; Indah Puspitasari
Jurnal Teknologi Terapan Vol 6, No 2 (2020): Jurnal Teknologi Terapan
Publisher : P3M Politeknik Negeri Indramayu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31884/jtt.v6i2.192

Abstract

Converter kits are equipment used to translate fuel oil (CNG) into gas fuel (CNG) in convertible vehicles. The use of a converter kit with CNG liquefied petroleum gas (LPG) will be used to optimize engine performance while driving, but its use is not yet known among the public because it is not affordable and there is no transition from fuel to consumed gas. Therefore, it is necessary to design a simple converter kit, affordable by the community, and can be supported on two different fuels. This study redesigned the manual converter kit with a research focus on aluminum gas mixer components with variations in the number of intake mixers (1, 2, and 3) and added mixing zones in the mixer area, using 110 cc single cylinder motorized engine with carburetor fuel system with a variation of 1500-9000 rpm. Engine performance testing is done using a chassis dynamometer. The use of LPG fuel in various types of input mixers is able to increase torque and power on the engine. Engine performance test data shows that the best torque value on the use of LPG materials in input mixer 1, 2, and 3 holes respectively are 17.44 Nm, 16.77 Nm and 11.71 Nm, while for gasoline fuel is 16 Meanwhile, the value of power in the use of LPG fuel with the input of mixer 1, 2 and 3 holes is capable of producing maximum power respectively 7.1 Hp, 7.4 Hp and 7.3 Hp, while for gasoline fuel at 7.7 Hp. The use of LPG fuel with the number of 1 hole mixer input is the best variation compared to gasoline fuel and the number of mixer inputs in the other variations.
Pengaruh Penambahan Gas HHO dan Modifikasi Timing Ignition terhadap Performa Mesin 4 Langkah 200cc Bias Elmira; Indah Puspitasari; Muhammad Mabrur
JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering) Vol. 7 No. 1 (2022): JOURNAL OF ELECTRICAL, ELECTRONICS, CONTROL, AND AUTOMOTIVE ENGINEERING (JEECAE
Publisher : Pengelolaan Penerbitan Publikasi Ilmiah (P3I) Politeknik Negeri Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Banyak cara peningkatan prestasi mesin sepeda motor bensin, diantaranya merubah sudut pengapian. Waktu pengapian diartikan sebagai waktu loncatan bunga api yang terjadi dibusi saat awal pembakaran, waktu pengapian diatur agar menghasilkan daya dan torsi maksimal. Tujuan penelitian adalah mengetahui pengaruh modifikasi timing ignition terhadap performa mesin empat langkah satu silinder. Metode yang digunakan adalah eksperimen, dilakukan pada sepeda motor Honda Tiger Revolution 200cc. Dengan derajat pengapian standar 10º sebelum TMA akan dimajukan menjadi 13º sebelum TMA dan 16º sebelum TMA yang menggunakan campuran gas HHO dan pertalite. Data hasil penelitian diambil menggunakan alat dynotest rextor pro dyno untuk mengetahui daya dan torsi yang dihasilkan. Hasil penelitian menunjukan adanya perbedaan daya dan torsi yang dihasilkan dua variasi waktu pengapian. Daya maksimal yang dihasilkan pada waktu pengapian standar ditambah injeksi gas HHO diperoleh hasil 18.2 HP dan torsi maksimal sebesar 19.24 Nm, sedangkan daya maksimal pada variasi pengapian 13º sebelum TMA diperoleh hasil 20.02 HP dengan torsi maksimum sebesar 20.38 Nm dan daya maksimal pada variasi pengapian 16º sebelum TMA diperoleh hasil 19.9 HP dengan torsi maksimum sebesar 19.88 Nm. Hal ini dikarenakan saat derajat pengapian dimajukan, maka proses pembakaran akan lebih panjang, sehingga pencampuran bahan bakar dan udara menjadi lebih baik sehingga tekanan hasil pembakaran menjadi lebih tinggi.
Penerapan Karbon Aktif Sebagai Media Pengolahan Air di Dusun Nglurah Yuli Prasetyo; Noorsakti Wahyudi; Farid Majedi; Imam Basuki; Indah Puspitasari; Titania Nur Cahyani
J-ADIMAS (Jurnal Pengabdian Kepada Masyarakat) Vol 9, No 2 (2021)
Publisher : (STKIP) PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/j-adimas.v9i2.2248

Abstract

Dusun Nglurah terletak di lereng Gunung Lawu dengan ketinggian 1.800 mdpl. Dusun ini terkenal sebagai dusun penghasil produksi tanaman hias/bunga yang mensuplai berbagai macam tanaman ke daerah Karanganyar, disekitar pulau jawa bahkan sampai ke luar jawa. Salah satu kelompok tani di daerah Dusun Nglurah adalah kelompok tani “Mulia Sejahtera”. Kelompok tani ini memanfatakan air dari sumber pegunungan untuk aktifitas kehidupan sehari-hari dan digunakan untuk penyiraman tanaman hias. PDAM Kabupaten Karanganyar belum menjangkau daerah Nglurah sehingga setiap warga harus mengambil sumber air yang ada di pegunungan dengan sistem menggunakan pipa secara mandiri. Air yang didapat dari atas pegunungan memang jernih namun pada saat musim hujan kadar air menjadi sangat keruh karena banyak material lumpur terbawa bersama aliran air. Dengan adanya program pemanfaatan karbon aktif untuk pengolahan air sumber pegunungan menjadi air yang bersih dan layak untuk kebutuhan sehari hari warga sehingga diharapkan dapat mengatasi permasalahan yang muncul di  Desa Wisata Sewu Kembang Tawangmangu mulai masalah kesehatan, kebersihan lingkungan, serta masalah minimnya pengetahuan tentang pengolahan air yang efektif dan efisien.
APLIKASI GAS HHO PADA SEPEDA MOTOR INJEKSI DENGAN MODIFIKASI ECU AFTERMARKET (TIMING PENGAPIAN) Indah Puspitasari; Noorsakti Wahyudi; Kuntang Winangun; Fadil Noor Rofiq
Jurnal Rekayasa Mesin Vol. 13 No. 2 (2022)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v13i2.1108

Abstract

HHO gas is a gas produced from electrolysis, which is the decomposition of an electrolyte using an electric current which produces Hydrogen Gas and Oxygen Gas / Hydrogen Hydrogen Oxygen. The purpose of this study was to determine the application of HHO gas by increasing ignition timing by 3º, 6º, and 9º using an aftermarket ECU on engine performance and injection motor emissions. The method used in this study is an experiment, testing using a dinotest measuring instrument and a gas analyzer. The results obtained are the highest average power value in all tests obtained on the variable use of HHO Gas without variations in ignition timing using an aftermarket ECU of 5.90 HP at 3500 Rpm engine speed, an increase of 0.13% from the conditions of HHO Gas usage and forward time. . ignition of 3º and 6º, an increase of 0.27% from HHO gas usage conditions and a forward ignition time of 9º. Then the highest average torque value from all tests was obtained on the variable using HHO Gas and variations in ignition timing using an aftermarket ECU with an advance of 3º of 14.39 Nm at 3000 rpm engine speed, an increase of 0.29% from conditions using HHO Gas without using Variation ignition timing using aftermarket ECU.
RANCANG BANGUN SISTEM REM MOBIL LISTRIK FUSENA Fauzan Ilham Maulana; Noorsakti Wahyudi; Indah Puspitasari
Jurnal Poli-Teknologi Vol. 18 No. 3 (2019)
Publisher : Politeknik Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32722/pt.v18i3.2342

Abstract

The brake system is a device to slow down or stop the movement of the wheel automatically so that the vehicle will move slowly. This completeness in the vehicle is very important and vital because it functions as a safety for life in driving. In the process of making the Electric Car Fusena brake system has steps in the process, consists of size planning, materials used, designs realized, manufacturing brake system supporting components, assembly, installation and testing of brake systems. The Fusena Electric Car brake system use a disc-type hydraulic brake system with one brake master that can work simultaneous with dual circuit fluids (front and rear braking). The comparison of the brake pedal is changed to 3: 1, designing and recreating the caliper stand to make it more precise so that it gets maximum brake performance and is better than the system used before. Static testing of the Fusena Electric Car hydraulic brake system is done by positioning the vehicle on an inclined plane at a slope of 15 and 20 with a variable driver load of 40 kg, 50 kg, 60 kg and 70 kg. The test results are that the vehicle does not experience displacement or movement. And the results of the average dynamic test of the Brake System at a speed of 27.3 km/h with an average braking distance of 171 cm = 1.71 meters and the average deceleration time is 0.26 seconds.