Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation) Yoga Sahria; Dhomas Hatta Fudholi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 2 (2020): April 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (842.85 KB) | DOI: 10.29207/resti.v4i2.1821

Abstract

In this time, the need of research, the development and the implementation of the result of research in health is increasing both from the researchers, the government, the academic even of from the public general. One of the ways to find out the health research trend is by topic modeling. The method that used in this research is topic modeling LDA (Latent Dirichlet Allocation) method. The purpose of this research is to identify how modeling topic method LDA analyze modeling topic to some health research in Indonesia by Sinta Journal and to know how the coherence value in each topic of the model that has been made. Besides, hopefully it can be used as a reference to do heath research in Indonesia based the topic that has been modeled. The development of this research uses Anaconda3 Python Programming Language Tools and utilizes the LDA library that provided to get the topic model. To examine the result of this research the respondent are medical worker, health researcher and academics. The result of this research the topic modeling that used 94,1% respondent say very good and 5,9% say good.
Pengembangan Aplikasi Virtual Reality dengan Model ADDIE untuk Calon Tenaga Pendidik Anak dengan Autisme Dhomas Hatta Fudholi; Rahadian Kurniawan; Dimas Panji Eka Jalaputra; Izzati Muhimmah
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 4 (2020): Agustus 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (782.079 KB) | DOI: 10.29207/resti.v4i4.2092

Abstract

Knowledge is needed for children with special needs to support their quality of life. This is a challenge for prospective educators / prospective teachers. A deeper knowledge is needed to really understand children with special needs. This research is carried out to develop a skill simulator application for autistic child’s prospective educator using Virtual Reality technology. This application will be used as a teaching medium which incorporates motion sensor tools. The sensors will make the virtual application looks realistic. The application was developed using the ADDIE method (Analysis, Design, Development, Implementation and Evaluation). The application development begins with discovering the characteristic of autistic children. This is done to formulate the learning materials. The knowledge base of the autistic children was obtained from the Sekolah Luar Biasa (SLB). By using the obtained knowledge, storyboard was designed and implemented. The developed application has been evaluated by 16 prospective child educators with autism and two professional experts. In general, the application can help prospective educators understand the characteristics of children with autism. Moreover, it provides a safe and pleasant teaching skill practice for the prospective educators.
Realtime Object Detection Masa Siap Panen Tanaman Sayuran Berbasis Mobile Android Dengan Deep Learning Andri Heru Saputra; Dhomas Hatta Fudholi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 4 (2021): Agustus 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (591.055 KB) | DOI: 10.29207/resti.v5i4.3190

Abstract

Determining the harvesting period can be done visually, physically, computationally, and chemically. Since the harvesting process is crucial, late harvesting will affect post-harvest and production quality. Leafy vegetables have a relatively short ready-to-harvest period. Visual recognition of the harvesting period combined with image processing can recognize harvesting vegetables' visual characteristics. This study aims to build a deep learning-based mobile model to detect real-time vegetable plant objects such as bok choy, spinach, kale, and curly kale to determine whether these vegetables are ready for harvest. Mobile-based architecture is chosen due to latency, privacy, connectivity, and power consumption reason since there is no round-trip communication to the server. In this research, we use MobileNetV3 as the base architecture. To find the best model, we experiment using different image input size. We have obtained a maximum MAP score of 0. 705510 using a 36,000 image dataset. Furthermore, after implementing the model into the Android mobile application, we analyze the best practice in using the application to capture distance. In real-time detection usage, the detection can be done with an ideal distance of 5 cm and 10 cm.
Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik Nurdi Afrianto; Dhomas Hatta Fudholi; Septia Rani
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 1 (2022): Februari 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.866 KB) | DOI: 10.29207/resti.v6i1.3676

Abstract

Stock market is one economic driver. It has roles in growth and development of a country. Stock is an attractive investment due to the huge profit. Many people buy and sell their stock. Stock investors try to choose the good investment company to get profits with small risk. Therefore, stock investors need to be careful and must evaluate a company. With machine learning technology, stock prediction problems can be solved. Deep learning is a subset of machine learning with own network. Deep learning has good performance in managing large amounts of data. This study used stock price history data and public sentiment data on a company. The method used in this research is Bidirectional Long-Short Term Memory (BiLSTM). The features used were closing price and compound score value of the public sentiment. Four scenarios were used in finding the best predictive model. The four scenarios use the same test data with different lengths of training data window. From the modelling, predictions with the model built using BiLSTM resulted in the smallest MSE value of 0.094 and the smallest RMSE value of 0.306.
Indonesian Hate Speech Detection Using Bidirectional Long Short-Term Memory (Bi-LSTM) Aditya Perwira Joan Dwitama; Dhomas Hatta Fudholi; Syarif Hidayat
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 2 (2023): April 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i2.4642

Abstract

Abstract Social media is a platform that allows users to express themselves freely including spreading hate speech content. The government has issued the regulation in the UU ITE to handle and prevent hate speech on social media. The research was also conducted using the Bi-LSTM to classify the text into hate speech or not. Another research was purposed to detect hate speech and its categories using Bi-GRU. However, the performance of the model Bi-GRU is still lower than Bi-LSTM with an accuracy of 86.44% and 96.44%. Therefore, this study aims to build a model that can detect hate speech and its categories. The research offers Bi-LSTM as a classification model and IndoBERT as a tokenization model. The dataset used is a public dataset containing 13 thousand tweets. As a result, the best model obtained is using 20 epochs, 192 batch sizes, 1 layer Bi-LSTM with 40 nodes, and applying class weighing in the optimization process. The pre-train model from IndoBERT that is used to support the performance of the model in classifying is "indobenchmark/indobert-large-p2". The performance given by the purposed model is very good with an average accuracy, precision, and recall of 97.66%, 96.50%, and 85.25%.
Predicting Smart Office Electricity Consumption in Response to Weather Conditions Using Deep Learning Wahyuzi, Zikri; Ahmad Luthfi; Dhomas Hatta Fudholi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 1 (2024): February 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i1.5530

Abstract

This study investigates the intricate relationship between electricity consumption in smart office environments, temporal elements such as time, and external factors such as weather conditions. Using a data set that encompasses electrical consumption statistics, temporal data, and weather conditions, the research employs preprocessing, visualization, and feature engineering techniques. The predictive model for electric energy usage is constructed using deep learning architectures, including Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). Evaluation metrics reveal that the LSTM model outperforms others, achieving minimal Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The study acknowledges the limitations of the data set, particularly when comparing electricity usage during work hours and outside working hours in a residential context. Future research aims to address these limitations, considering detailed meteorological data, missing data imputation, and real-time applications for broader applicability. The ultimate goal is to develop a predictive model that serves as a valuable tool for improving energy management in smart office settings, optimizing electricity usage, and contributing to long-term firm profitability.
Co-Authors Abdullah Aziz Sembada Abdullah Aziz Sembada Abyan Fadilla Noor Aditya Perwira Joan Dwitama Affan Taufiqur Afrianto, Nurdi Ahmad Fathan Hidayatullah, Ahmad Fathan Ahmad Luthfi Ahmad Rafie Pratama Altesa Yunistira Andi Wafda Andri Heru Saputra Annisa Zahra Ari Farhan Nurihsan Ari Sujarwo Arief Rahman Arrie Kurniawardhani Arrie Kurniawardhani Chandra Kusuma Dewa Chatarina Umbul Wahyuni Dendy Surya Darmawan Deny Rahmalianto Dimas Adi Wibowo Dimas Danu Budi Pratikto Dimas Pamilih Epin Andrian Dimas Panji Eka Jalaputra Dirgahayu, Raden Teduh Dziky ridhwanulah Eko Prasetio Widhi Eko Setiawan Erin Eka Citra Fahmi Adi Nugraha Ferdian Nursulistio Fery Luvita Sari Gilang Persada Bhagawadita Gunanto Gunanto Harry Akbar Al Hakim Ibnu Fajar Arrochman Insanur Hanifuddin Iqbal Syauqi Mubarak Izzan Yattaqi Nugraha Izzati Muhimmah Jaka Nugraha LAILA KUSUMA WARDANI Lizda Iswari M. Ulil Albab Surya Negara Malik Abdul Aziz Mawar Hardiyanti Meilita . Moch Bagoes Pakarti Moch Yusuf Asyhari Muhammad Abyanda Tamaza Muhammad Habib Izdhihar Muhammad Rizhan Ridha Muhammad Sulthon Alif Novian Mahardika Putra Purwoko, Agus Raden Teduh Dirgahayu Rahadian Kurniawan Rakhmat Syarifudin Rendy Ressa Sutrisno Ridho Iman Tiyar Risca Naquitasia Royan Abida N. Nayoan Sabar Aritonang Rajagukguk Safira Yuniar Putri Buana Salma Aufa Azaliarahma Salsabila Zahirah Pranida Septia Rani Septia Rani Sigit Nugroho Siti Mutmainah Siwi Cahyaningtyas Sri Mulyati Teduh Dirgahayu Tri Handayani Umar Abdul Aziz Al-Faruq Wahyu Fajrin Mustafa Wahyuzi, Zikri windi astriningsih Yasmin Aulia Ramadhini Yoga Sahria Yudi prayudi