Claim Missing Document
Check
Articles

Found 35 Documents
Search

WORD EMBEDDING ANALYSIS IN SENTIMENT ANALYSIS USING MACHINE LEARNING: A CASE STUDY OF STEAM RPG GAME REVIEWS Ardian Adam Alfarisyi; Mahendra Dwifebri Purbolaksono; Alfian Akbar Gozali
Jurnal Sistem Informasi Vol. 12 No. 2 (2025)
Publisher : Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30656/jsii.v12i2.10917

Abstract

User reviews on gaming platforms such as Steam have become a crucial source of information for potential players before making purchasing decisions. Due to the varied nature of user opinions, sentiment analysis is essential for processing and interpreting these reviews. This study investigates the application of sentiment analysis to RPG game reviews on Steam, aiming to assist users by summarizing reviews through sentiment results and providing insights into the general perception of a game. To achieve this, the study applies sentiment analysis using Word2Vec and Support Vector Machine (SVM). It focuses on evaluating the impact of lemmatization during preprocessing and analyzing the performance of Word2Vec in sentiment classification. Word2Vec transforms review text into vector representations that capture semantic relationships, enhancing the model’s ability to understand context. Meanwhile, SVM is chosen as the classifier for its effectiveness in distinguishing between positive and negative reviews and handling high-dimensional data. The system developed uses Word2Vec with 300-dimensional vectors combined with an SVM Polynomial classifier, resulting in the best performance among the tested models. The final model achieves a macro-average F1-score of 88.6%, indicating a strong capability in accurately classifying sentiments in user reviews. These results highlight the potential of combining word embedding and machine learning techniques for analyzing sentiment in gaming platforms.   Keywords: sentiment analysis, Word2Vec, SVM, Steam, RPG
Sentiment Classification and Interpretation of Tokopedia Reviews: A Machine Learning, IndoBERT, and LIME Approach Mbake Woka, Adrian Yoris; Purbolaksono, Mahendra Dwifebri; Utama, Dody Qori
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.8072

Abstract

Sentiment classification of user reviews plays a vital role in business decision-making, especially on e-commerce platforms like Tokopedia. This study evaluates the performance of various sentiment classification models such as Logistic Regression LinearSVC, and BERT models, both baseline and fine-tuned. Evaluation metrics used include accuracy, precision, recall, and F1-score, applied to Tokopedia review data labelled based on user ratings. The result is fine-tuned BERT model has the best and consistent result, with 92% accuracy and 0.92 f1-score for each class. This shows that fine-tuned BERT can effectively capture the semantic context of user reviews. Its consistent performance across classes makes it suitable for reliable sentiment classification in real-world applications. Furthermore, fine-tune BERT model is visualized by Local Interpretable Model-agnostic Explanation to identify features – in this case is word – that indicates sentiment as positive or negative. It will show as color, orange for positive and blue as negative. This method will make the model more transparent and more reliable.
Sentiment Analysis of Game Review in Steam Platform using Random Forest Dwifebri Purbolaksono, Mahendra
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 2 (2024): Vol.10 No. 2 Dec 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i2.1007

Abstract

Steam provides a platform for buyers to write reviews of the software or games they have purchased. Developers will benefit from knowing the criticisms and suggestions given by their community. The number of reviews users give is so large that developers find it difficult to determine whether users like or dislike the games they create. In the Steam application, there is a rating system, but the ratings given by users do not always represent the content of the comments. Therefore, sentiment analysis is used to facilitate developers in understanding the sentiment of the reviews given by users. Sentiment analysis is used to solve this problem. In this research, the sentiment analysis method used is Random Forest with TF-IDF feature extraction in Bigram and Trigram. Based on the research results, scenario testing using Bigram TF-IDF instead of Trigram then in the preprocessing stage without Lemmatization achieved the highest performance. The average F1 score obtained was 62%.
Analisis Sentimen Kategori Aspek Pada Ulasan Produk Menggunakan Metode KNN Dengan Seleksi Fitur Mutual Information Wilantapoera, Alex Wira; Astuti, Widi; Purbolaksono, Mahendra Dwifebri
eProceedings of Engineering Vol. 10 No. 2 (2023): April 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Analisis sentimen adalah bidang yang cukup populer untuk menganalisis opini, sikap, dan emosi terhadap suatu subjek dari banyak orang. Dalam hal ini teks ulasan menjadi alat untuk menilai, menimbang, dan mengkritik sebuah produk yang diulas. Produk adalah suatu hal yang dapat memuaskan seorang konsumen dalam bentuk yang beragam seperti barang, jasa, dan sebagainya. Pada penelitian ini dilakukan sebuah implementasi sebuah klasifikasi pada ulasan produk kecantikan dari situs Female Daily dengan menggunakan metode k-Nearest Neighbor (kNN). Metode kNN merupakan metode yang umum digunakan untuk klasifikasi. Lalu menggunakan Mutual Information (MI) sebagai metode seleksi fiturnya. Pada penelitian ini dihasilkan nilai akurasi 91,59% pada aspek price, 90,33% pada aspek packaging, 50,05% pada aspek product, dan 85,89% pada aspek aroma.Kata kunci-k-Nearest Neighbour, Ulasan Produk, Ulasan, Produk, Mutual Information, Analisis sentimen.
Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily Wicaksono, Muhammad Hadiyan; Purbolaksono, Mahendra Dwifebri; Faraby, Said Al
eProceedings of Engineering Vol. 10 No. 3 (2023): Juni 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Beredar produk produk kecantikan yang di jual di internet oleh berbagai macam produsen baik luar negeri maupun dalam negeri. Akan tetapi masih diragukan kualitas kosmetik yang dijual oleh tiap produsen, agar mengetahui apakah produk tersebut baik digunakan maka produsen perlu mendapatkan ulasan/review dari konsumen yang memakai produk tersebut. Untuk itu agar produsen lebih mudah untuk mencari produk yang relevan dengan kesehatan maka dibutuhkan sebuah sistem untuk mengklasifikasikan review produk tersebut termasuk kategori relevan atau tidak relevan terhadap aspek kesehatan. Pada Tugas Akhir ini digunakan Machine learning pada klasifikasi sentimen menggunakan Random Forest, Support Vector Machine(SVM), dan K-Nearest Neighbour(KNN) untuk mencari accuracy tertinggi dan F1-score dari ketiga algoritma tersebut dengan menggunakan feature extraction yaitu chi-square dengan feature selection menggunakan Selected K Best untuk proses preprocessing. Dalam penelitian ini telah diperoleh analisis hasil bahwa algoritma SVM dengan kernel Linear mendapatkan nilai akurasi terbaik sebesar 67.10%.Kata kunci-perbandingan, analisis sentimen, KNN, random forest, SVM, chi- square, selected K Best, female daily, kesehatan