Claim Missing Document
Check
Articles

Found 18 Documents
Search

SISTEM PENENTUAN PENCERAMAH MASJID PARIPURNA KOTA PEKANBARU MENGGUNAKAN ALGORITMA PENGKLASTERAN K-MEANS Silfia Silfia; Rahmad Kurniawan; Nazruddin Safaat Harahap; Elvia Budianita; Fadhilah Syafria; Iwan Iskandar
JURNAL TEKNIK INFORMATIKA Vol 14, No 2 (2021): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v14i2.23750

Abstract

There are 903 mosques in Pekanbaru City, Riau Province. In 2016, the Pekanbaru City Government formed a Paripurna Mosque program which the Pekanbaru Paripurna Mosque Management Agency manages. Each mosque holds religious activities which a preacher fills. The mosque has a regular schedule of lectures with a short transition period for each type of religious activity held. Based on observations, the mosque management did not get complete information regarding the profile of the preacher. Furthermore, many preachers have canceled lecture schedules due to distance issues and the suitability of the lecturer's profile with the congregations. Therefore, a recommendation system using the K-means algorithm is necessary based on coordinate points, location access, and appropriate types of religious activities for the Pekanbaru Paripurna Mosque. This study also employed one hot encoding technique for non-numeric data. Based on the experimental testing results on the five clusters, the silhouette coefficient value is 0.945. Based on the results, it can be concluded that the system for determining the preachers of the Pekanbaru City Paripurna Mosque has the potential to be used.
K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors Suwanto Sanjaya; Morina Lisa Pura; Siska Kurnia Gusti; Febi Yanto; Fadhilah Syafria
Indonesian Journal of Artificial Intelligence and Data Mining Vol 2, No 2 (2019): September 2019
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (635.888 KB) | DOI: 10.24014/ijaidm.v2i2.7975

Abstract

The selection of tomatoes can use several indicators. One of the indicators is the fruit color. In digital image processing, one of the color information that could be used in Hue, Saturation, and Value (HSV). In this research, HSV is proposed as a color model feature for information on the ripeness of tomatoes. The total data of tomato images used in this research were 400 images from four sides. The maturity level of tomatoes uses five levels, namely green, turning, pink, light red, and red. The process of divide data uses K-Fold Cross Validation with ten folds. The method used for classification is k-Nearest Neighbor (kNN). The scenario of the test performed is to combine the image size with the parameter value of the neighbor (k). The image sizes tested are 100x100 pixels, 300x300 pixels, 600x600 pixels and 1000x1000 pixels. The “k” values tested were 1, 3, 5, 7, 9, 11, and 13. The highest accuracy reached 92.5% in the image size 1000x1000 pixels with a parameter “k” is 3. The result of the experiment showed that the image size has a significant influence of accuracy, but the parameter value of neighbor (k) has an influence that is not too significant.
A Web-Based Bitcoin Currency Price Forecasting System Using Multiple Linear Regression Algorithm Ismar Puadi; Rahmad Kurniawan; Benny Sukma Negara; Fadhilah Syafria; Fitra Lestari
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2021: SNTIKI 13
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Keberadaan cryptocurrency memberikan kemajuan transaksi dalam bidang ekonomi. Salah satu jenis cryptocurrency adalah Bitcoin (BTC), BTC saat ini banyak digunakan oleh para pebisnis dan investor. BTC dapat diperjualbelikan setiap saat tanpa ada Batasan waktu, namun harga BTC berfluktuasi. Peramalan harga BTC yang cepat diperlukan oleh para investor untuk mencegah kerugian dalam jumlah besar. Peramalan secara manual sulit dilakukan karena harga BTC yang berfluktuasi BTC secara cepat. Oleh karena itu, diperlukan  Teknik yang cepat dan jitu menggunakan Machine Learning. Salah satu algoritma yang sederhana, cepat dan tepat dalam komputasi  untuk memprediksi harga BTC adalah Regresi Linear Berganda. Penelitian ini menggunakan data enam tahun yaitu tahun 2014-2021 sebagai data latih. Berdasarkan hasil eksperimen, diperoleh formula Y=-0,16780543+((-0,41658744)X1 )+((0,84132834)X2) + ((0,57040201)X3). Selanjutnya dari persamaan linear tersebut digunakan untuk pengujian. Berdasarkan hasil eksperimen, didapat bahwa sistem peramalan harga BTC menghasilkan tingkat kesalahan RMSE 405,23 dan MAPE sebesar 1,22. Sistem peramalan berbasis web ini berpotensi digunakan sebagai pertimbangan oleh pengguna dalam meramalkan harga BTC.
Penerapan Learning Vector Quantization 3 Dalam Menentukan Bakat Anak Agung Syaiful Rahman; Elvia Budianita; Reski Mai Candra; Fadhilah Syafria
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 5, No 3 (2022): Juni 2022
Publisher : Program Studi Teknik Informatika, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v5i3.4398

Abstract

Abstrak - Banyaknya bakat anak yang tidak diketahui oleh sebagian besar Orang tua di Indonesia dikarenakan sedikitnya ahli anak sebagai tempat untuk konsultasi yang menjadi faktor utama dalam perMasalahan ini. Tujuan dari penelitian ini ialah agar para Orang tua dapat mempermudah dalam menggali potensi dalam diri anak mereka masing-masing, yakni dengan menggunakan jaringan saraf tiruan. Ada beberapa metode dalam jaringan saraf tiruan,  learning vector quantization 3 merupakan saah satu dari bagian tersebut. Bakat anak yang diambil merupakan bakat anak yang berdasarkan standar United State of Education America. Anak yang diteliti merupakan murid dari Sekolah Dasar Negeri 011 Titian Resak dengan rentang usia 10-12 tahun. Penelitian ini menunjukkan bahwa learning vector quantization 3 membutuhkan sedikitnya 5 kriteria dengan 30 variabel bakat anak sebagai dasar dari penelitian ini. Berdasarkan hasil yang didapatkan, sistem ini berhasil mengidentifikasi bakat anak dengan rentang pembagian 90% data latih dan 10% data uji dan parameter window (0.1,0.2,0.3), epsilon (0.1,0.2,0.3), alpha (0.1) sebesar 81.82%.Kata kunci : Bakat Anak, Learning Vector Quantization 3, Jaringan Saraf Tiruan Abstract - The number of children's taents that are not known by most parents in Indonesia is due to the lack of child experts as a place for consultation which is the main factor in this problem. The purpose of this research is that parents can make it easier to explore the potentia in their respective children, namely by using artificia neura networks. There are severa methods in artificia neura networks, learning vector quantization 3 is one of them. The taent of the child taken is the child's taent based on the standards of the United State of Education America. The children studied were students from the 011 Titian Resak State Elementary School with an age range of 10-12 years. This study shows that learning vector quantization 3 requires at least 5 criteria with 30 variables of children's taents as the basis of this research. Based on the results obtained, this system succeeded in identifying children's taents with a distribution range of 90% of training data and 10% of test data and parameters window (0.1.0.2.0.3), epsilon (0.1.0.2.0.3), apha (0.1) of 81.82% .Keyword : Child Talent, Learning Vector Quantization 3, Artificia Neura Network
PREDIKSI DATA INDEKS HARGA KONSUMEN PROVINSI RIAU BERBASIS TIME SERIES DENGAN METODE DOUBLE EXPONENTIAL SMOOTHING Dina Septiawati; Siska Kurnia Gusti; Fadhilah Syafria; Yusra Yusra; Eka Pandu Cynthia
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 7, No 4 (2022)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v7i4.3209

Abstract

Indeks Harga Konsumen merupakan indeks yang menghitung rata-rata perubahan harga barang dan jasa. Penelitian ini menggunakan data Indeks Harga Konsumen Provinsi Riau bulan Januari tahun 1999 sampai dengan bulan Desember tahun 2021 yang bersumber dari website resmi Badan Pusat Statistik Provinsi Riau. Penelitian ini bertujuan untuk memberikan gambaran tentang perkembangan indeks harga konsumen apakah mengalami kenaikan atau penurunan sehingga dapat dijadikan sebagai bahan evaluasi kebijakan yang akan diambil oleh pihak pemerintah, swasta, maupun pemegang otoritas moneter. Tahapan untuk prediksi dengan menggunakan metode double exponential smoothing yaitu menghitung nilai pemulusan tunggal (single smoothing), menghitung pemulusan ganda (double smoothing), menghitung nilai konstanta pemulusan, menghitung nilai kofisien trend, dan melalukan prediksi. Untuk melakukan pengujian prediksi maka dilakukan dengan cara perhitungan mean absolute percentage error. Berdasarkan perhitungan yang telah dilakukan, diperoleh hasil prediksi nilai indeks harga konsumen sebesar 105,17 dengan alpha 0,6 bernilai 3,132646%. Dapat disimpulkan bahwa metode double exponential smoothing mempunyai kemampuan yang baik dalam prediksi nilai indeks harga konsumen.
DESAIN ARSITEKTUR DATA WAREHOUSE PADA DATA TRANSAKSI PENJUALAN ROTTE BAKERY Devi Julisca Sari; Siska Kurnia Gusti; Alwis Nazir; Elin Haerani; Fadhilah Syafria
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 5 No 2 (2022)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v5i2.605

Abstract

The increasingly fierce competition between competitors requires companies to be able to compete and maintain their existence in order to continue to grow, for that utilizing information technology such as data warehouses will play a large enough role, because optimal data processing will produce quality information in supporting companies to take appropriate policies. as well as increasing the productivity and effectiveness of the company's performance. The application of the data warehouse can be started by making an architectural design that will be made, for that the researcher aims to provide recommendations for the design of the data warehouse architecture on the sales transaction data of Rotte Bakery by applying the Nine Steps Kimball method. The final result of this research is the application of the Nine Steps Kimball method and the integration of transaction data through the ETL process (extract, transform, load) successfully produces data stored in the data warehouse only the data that is needed and has been uninformed, so that data processing only takes a long time. shorter time in supporting appropriate policy making and achieving business strategies in order to be able to keep pace with the business competition
Klasifikasi Clickbait Menggunakan Transformers Mori Hovipah Mori Hovipah; Elin Hearani; Jasril Jasril; Fadhilah Syafria
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i1.4713

Abstract

Clickbait is a news title created by the author with the aim of attracting the getting to get readers so they Never miss a headline. Clickbait headlines are typically quirky, confusing, and use exaggerated sentences to entice readers to click on links. However, clickbait headlines that look very attractive often do not match the information in the headlines and the content of the news, which can lead to the spread of fake news and hoaxes. Then classification of clickbait news titles is carried out, for this research, clickbait classification was carried out for news titles will be carried out using the Transformers method. The number of news titles used in this study amounted to 6632 news titles. The process of classification of news titles in this study includes: collecting data, labeling data, preprocessing, EDA, and classification using transformers. The best accuracy value obtained in this study was 63% for precision of 0.63 and recall of 1 using a data division of 10%: 90%.
Clustering Vaksinasi Penyakit Mulut dan Kuku Di Provinsi Riau Menggunakan Algoritma K-Medoids Riska Yuliana; Alwis Nazir; Reski Mai Candra; Suwanto Sanjaya; Fadhilah Syafria
JUKI : Jurnal Komputer dan Informatika Vol. 5 No. 1 (2023): JUKI : Jurnal Komputer dan Informatika, Edisi Mei 2023
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Foot and Mouth Disease (FMD) atau biasa pula disebut penyakit mulut dan kuku (PMK) merupakan penyakit infeksi akut yang menularkan ke hewan lain karena disebabkan oleh virus yang masuk dalam genus Apthovirus dan famili Picornaviridae. PMK perlu ditangani karena menyebabkan kerugian finansial terutama disebabkan oleh penurunan produksi hewan ternak seperti susu maupun daging, produktivitas tenaga kerja serta keterbatasan pangan. Salah satu penanganan dan pengendalian PMK pada hewan ternak sapi yaitu ,melakukan program vaksinasi. Penelitian ini menggunakan data dari Dinas Peternakan dan Kesehatan Provinsi Riau. Penelitian ini menggunakan teknik data mining dalam pengolahan datanya menggunakan metode k-medoids clustering. Proses K-Medoids merupakan proses agregasi yang membagi data menjadi beberapa kelompok, dan hasil dari proses clustering ini tidak bergantung pada urutan record yang dimasukkan. maka metode ini juga dapat mengatasi kelemahan dari k-means. Metode k-medoids dapat diterapkan pada data vaksinasi penyakit mulut dan kuku di Provinsi Riau, dan dapat diidentifikasi kelompok kekebalan hewan berdasarkan data tersebut. . Hasil cluster terbaik setelah dilakukan pengujian yaitu 2 cluster. Cluster terendah berada pada cluster 1 sebanyak 21894 ekor dan cluster 2 sebanyak 48042 ekor. Dimana dalam proses pengujian dilakukan menggunakan Davies Bouldien Index (DBI) mendapatkan nilai -0.482. Diharapkan penelitian ini dapat memberikan perhatian lebih untuk vaksinasi terhadap PMK karena kekebalan hewan yang masih rendah sehingga memudahkan terinfeksinya PMK.
Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar Abdussalam Al Masykur; Siska Kurnia Gusti; Suwanto Sanjaya; Febi Yanto; Fadhilah Syafria
Jurnal Informatika Vol 10, No 1 (2023): April 2023
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v10i1.15621

Abstract

Di Perkebunan Sei Lukut, Desa Maredan Barat, Kecamatan Tualang, Kabupaten Siak, Provinsi Riau, PT. Surya Intisari Raya, sebuah perusahaan swasta, mengelola perkebunan kelapa sawit. Memiliki 4 bagian lahan kelapa sawit yang terdiri dari 216 blok dengan total sekitar 4.000 Ha. Blok kelapa sawit biasanya mencakup 20 hektar dan berisi 28.000 pohon kelapa sawit, dengan kapasitas produksi bulanan sebesar 57 ton. Pemetaan klaster produksi tandan buah segar berupaya membantu pelaku usaha memutuskan kebijakan apa yang akan diterapkan untuk meningkatkan akurasi dan produktivitas produksi minyak sawit. Metode K-Means merupakan komponen dari metode clustering, yang merupakan subset dari kelompok Unsupervised Learning dan digunakan untuk mempartisi data ke dalam berbagai kategori. Untuk mengelompokkan blok lahan berdasarkan delapan data variabel luas pokok, panjang panen, daun lepas, curah hujan, pupuk, tujuan, dan persentase keberhasilan, penelitian ini akan menerapkan Indeks Davies Bouldin dengan alat RapidMiner. Kesimpulan akhir dari penelitian ini adalah sebuah aplikasi yang dapat memetakan pengelompokan areal produksi tandan buah segar dengan menerapkan metode K-Means Clustering, dengan nilai Davies Bouldin Index terkecil sebesar 0,921 pada jumlah cluster 3 yang termasuk Cluster C1 (Produktivitas Sedang). Terdiri dari 96 blok tanah, Cluster C2 (Produktivitas Rendah) terdiri dari 41 blok tanah, dan Cluster C3 (Produktivitas Tinggi) terdiri dari 79 blok tanah.In Sei Lukut Estate, West Maredan Village, Tualang District, Siak District, Riau Province, PT. Surya Intisari Raya, a private business, administers oil palm plantations. It has 4 sections of oil palm land made up of 216 blocks totaling about 4,000 Ha. Blocks of oil palm typically cover 20 hectares and contain 28,000 palm trees, with a monthly output capacity of 57 tons. The mapping of the production clusters for fresh fruit bunches seeks to help the business decide what policies to implement to increase the accuracy and productivity of palm oil production. The K-Means method is a component of the clustering method, which is a subset of the Unsupervised Learning group and is used to partition data into various categories. In order to group land blocks based on the eight variable data areas of total principal, harvest length, loose leaf, rainfall, fertilizer, goal, and percentage of success, this study will apply the Davies Bouldin Index with RapidMiner tools. The final conclusion of this research is an application that can map the grouping of fresh fruit bunch production areas by applying the K-Means Clustering method, with the smallest Davies Bouldin Index value of 0.921 in the number of clusters 3 including Cluster C1 (Medium Productivity) consisting of 96 blocks land, Cluster C2 (Low Productivity) consists of 41 land blocks, and Cluster C3 (High Productivity) consists of 79 land blocks.
Classification Academic Data using Machine Learning for Decision Making Process Elin Haerani; Fadhilah Syafria; Fitra Lestari; Novriyanto Novriyanto; Ismail Marzuki
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 2 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v4i2.1983

Abstract

One of the qualities of higher education is determined by the success rate of student learning. Assessment of student success rates is based on student graduation on time. Sultan Syarif Kasim State Islamic University Riau is one of the state universities in Riau, with a total of 30,000 students. Of all the active students, there are some who are not. Students who are not active in this case will affect the timeliness of their graduation. The university always evaluates the performance of its students to find out information related to the factors that cause students to become inactive so that they are more likely to drop out and what data affect students being able to graduate on time. The evaluation results are stored in an academic database so that the data can later be used as supporting data when making decisions by the university. This research used data science concepts to explore and extract data sets from databases to find models or patterns, as well as new insights that can be used as tools for decision-making. After the data was explored, machine learning concepts were used to identify and classify the data. The method used was the Decision Tree Method. The results of the study found that these two concepts can provide the expected results. Based on the test results, it is known that the attribute that influences the success of student studies is the grade point average (GPA), where the accuracy of the maximum recognition rate is 88.19%. Keywords : Data science; Decision Tree; Graduate on Time; Machine Learning;