Claim Missing Document
Check
Articles

Found 18 Documents
Search

PENERAPAN METODE K-MEANS UNTUK PENGELOMPOKAN DATA KAPAL BARANG (STUDI KASUS: KSOP PEKANBARU) Ariq At-Thariq Putra; Alwis Nazir; Febi Yanto; Suwanto Sanjaya; Fadhilah Syafria
SYNTAX Jurnal Informatika Vol 12 No 01 (2023): Mei 2023
Publisher : Universitas Singaperbangsa Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transportation by sea is crucial for national development as it contributes to the growth of the economy and other ship transport sectors. With the increasing demand for cargo ships in the maritime transportation industry, data clustering is needed to review the growth of cargo ships in Riau. K-Means is a commonly used technique for clustering data that helps to classify data effectively. This algorithm is not influenced by data series and starts with the random determination of cluster centers during calculation. This cargo ship research aims to classify cargo ship data at the Pekanbaru KSOP, which allows the Pekanbaru KSOP to easily monitor the development of cargo ships.
Penerapan Fuzzy Backpropagation Neural Network dalam Klasifikasi Penyakit Stroke Karina Julita; Iis Afrianty; Suwanto Sanjaya; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.31351

Abstract

Stroke adalah penyakit cerebrovaskuler yang ditandai dengan gejala neurologis tiba-tiba akibat cedera vaskular akut pada otak. Menurut WHO pada tahun 2019, stroke penyebab utama kematian dan kecacatan kedua di dunia, dengan prevalensi global 101,5 juta orang. Diagnosis medis penting dalam penanganan stroke, namun biaya yang tinggi sering menjadi kendala bagi masyarakat. Penelitian ini bertujuan untuk mengembangkan metode Fuzzy Backpropagation Neural Network dalam klasifikasi stroke dengan menggunakan data sekunder dari platform Kaggle yang berjumlah 4981 data. Analisis data melibatkan sepuluh variabel relevan dalam klasifikasi stroke diantaranya variabel seperti jenis kelamin, umur, hipertensi, riwayat penyakit jantung, indeks massa tubuh, nilai kadar gula dalam darah, status pernikahan, status merokok, tipe pekerjaan dan lingkungan tempat tinggal. Pada penelitian ini, pengujian yang dilakukan dibagi menjadi tiga skenario diantaranya, skenario 1 dengan α = 0,1, skenario 2 dengan α = 0,01 dan skenario 3 dengan α = 0,001 pada epoch 10, 1000 dan 100000. Hasil pengujian menunjukkan akurasi tertinggi dengan menggunakan pola jaringan 10-4-1 pada pembagian data latih dan data uji 70%:30% dengan α = 0.01 dan  epoch 100000 menghasilkan tingkat akurasi sebesar 86,52%, presisi 0,87, recall 0,87 dan f-1 score 0,87. Berdasarkan hasil pengujian tersebut, FBPNN dinilai mampu dalam mengklasifikasi stroke dengan kinerja yang baik.
Klasifikasi Citra Daging Sapi dan Babi Menggunakan Convolutional Neural Network (CNN) dengan Arsitektur EfficientNet-B2 dan Augmentasi Data Deny Ardianto; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.30587

Abstract

Permintaan daging sapi Indonesia meningkat secara signifikan setiap tahun. Meningkatnya kebutuhan daging sapi ini sering dimanfaatkan oleh pedagang untuk mendapatkan untung lebih dengan cara mencampurkan daging sapi dan babi (oplosan). Membedakan daging sapi, babi, dan oplosan secara manual menggunakan penciuman dan penglihatan manusia sangatlah sulit. Untuk membantu membedakan daging tersebut dapat menggunakan teknologi yaitu pengolahan citra. Penelitian ini menggunakan Convolutional Neural Network (CNN) berarsitektur EfficientNet-B2 untuk pengolahan citra dan klasifikasi. Pada penelitian ini juga dilakukan proses augmentasi data citra untuk memperbanyak citra dengan tujuan meningkatkan akurasi. Jumlah citra asli daging sebanyak 900 telah mengalami peningkatan setelah dilakukan proses augmentasi, menjadi 9000 citra yang mencakup daging sapi, babi, dan oplosan. Dataset dibagi menjadi dua bagian, yaitu dataset pelatihan dan testing, dengan rasio perbandingan 80:20 dan 90:10. Dengan menggunakan dataset citra augmentasi dengan kombinasi optimizer Adamax, activation Swish, dan learning rate 0.1, penelitian ini menghasilkan akurasi klasifikasi tertinggi, yaitu 98,22% accuracy, 98,25% precision, 98,22% recall, 98,22% f1-score, dengan rasio perbandingan data 90:10.
Klasifikasi Penyakit Stroke Jaringan Syaraf Tiruan Menerapkan Metode Learning Vector Quantization Puspa Melani Almahmuda; Iis Afrianty; Suwanto Sanjaya; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.31359

Abstract

Penyakit Stroke ialah salah satu penyebab kematian paling umum dan sering terjadi didunia termasuk Asia setelah penyakit jantung koroner dan kanker. Pemecahan masalah dengan melakukan klasifikasi penyakit stroke menggunakan metode Learning Vector Quantization (LVQ) dengan mengklasifikasikan data stroke dan tidak stroke (normal) berdasarkan gejala penyakit. Adapun dataset diperoleh dari situs Kaggle berjumlah 4981 data yang memiliki 10 variabel diantaranya jenis kelamin, usia, status pernikahan, hipertensi, penyakit jantung, tipe kerja, tipe tempat tinggal, tingkat avg glukosa, BMI (indeks massa tubuh), dan smoking status. Data tersebut dilakukan klasifikasi LVQ dengan membagi data yaitu 90:10, 80:20, 70:30 dan 60:40 dan parameter learning rate = 0,01 dan 0,001 serta epoch 1000. Dari proses klasifikasi tersebut maka didapatkan hasil akurasi tertinggi 70% dengan presisi 0,72 recall 0,70 dan f1 score 0,69, diperoleh dengan membagi data 90% : 10%. Berdasarkan hasil tersebut, metode LVQ pada penelitian ini mampu melakukan klasifikasi penyakit stroke dengan cukup  baik.
Klasifikasi Daging Sapi dan Daging Babi Menggunakan CNN dengan Arsitektur EfficientNet-B4 dan Augmentasi Data Ahmad Paisal; Jasril Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.30586

Abstract

Meningkatnya kebutuhan daging sapi, membuat harga daging sapi melonjak. Banyak pedagang melakukan kecurangan dengan melakukan oplos daging sapi dengan daging babi agar mendapatkan keuntungan yang lebih. Salah satu teknologi dalam bidang informatika dapat dimanfaatkan untuk membantu membedakan daging sapi, daging babi, dan daging oplosan. Dengan cara klasifikasi hal ini dapat dilakukan, penelitian ini menggunakan Convolutional Neural Network dengan arsitektur EfficietnNet-B4. Proses augmentasi data juga dilakukan pada penelitian ini untuk memperbanyak data citra, setelah di-augmentasi total citra menjadi 9000 dari 3 kelas. Pembagian dataset pada penelitian ini dibagi menjadi 2 yaitu 80% data latih dan 20% data uji serta 90% dan 10%. Proses pengujian dilakukan dengan memfokuskan model yang mendapatkan validation accuracy diatas 75% pada proses pelatihan. Hasil percobaan pada dataset 80:20 citra dengan augmentasi lebih unggul pada setiap model dibanding dengan citra asli. Sedangkan pada dataset 90:10 hasil percobaan dengan citra asli rata – rata lebih unggul dibanding citra dengan augmentasi.
Implementasi Algoritma C4.5 dalam Melakukan Klasifikasi Penyakit Stroke Otak Felian Nabila; Iis Afrianty; Suwanto Sanjaya; Fadhilah Syafria
Jurnal Informatika Universitas Pamulang Vol 8, No 2 (2023): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v8i2.31361

Abstract

Stroke merupakan gangguan kesehatan dalam jangka panjang dan menjadi salah satu penyakit dengan resiko kematian paling tinggi. Penanganan stroke dengan cepat menyebabkan tingkat kemunculan komplikasi dan kerusakan yang terjadi pada otak berkurang. Oleh karena itu perlunya melakukan analisa diri pada orang yang bersangkutan  apakah orang tersebut mengalami penyakit stroke atau tidak. Penelitian ini melakukan klasifikasi algoritma C4.5 penyakit brain stroke guna menganalisa data terkait penyebab stroke dengan model decision tree dan membagi dataset menjadi 3 yakni train set, validation set, test set dengan perbandingan 70:20:10, kemudian didapatkanlah hasil dengan akurasi yang tinggi sebesar 95% disetiap data train set, validation set, test set. Serta presisi sebesar 0,91, recall sebesar 0,54, f1-score sebesar 0,56 untuk data train set, kemudian presisi sebesar 0,48, recall sebesar 0,50, f1-score sebesar 0,49 untuk validation set, dan presisi sebesar 0,48, recall sebesar 0,50, f1-score sebesar 0,49 untuk test set. Dapat Disimpulkan bahwa algoritma C4.5 decision tree ini dapat melakukan klasifikasi penyakit stroke dengan sangat baik.
Application of K-Means Algorithm on Clustering Recipients of Non-Cash Food Assistance (NCFA) Said Nanda Saputra; Elin Haerani; Jasril Jasril; Lola Oktavia; Fadhilah Syafria
CESS (Journal of Computer Engineering, System and Science) Vol 8, No 2 (2023): July 2023
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/cess.v8i2.48026

Abstract

Persoalan Kemiskinan pada berbagai daerah Indonesia menjadi fokus perhatian. Program BPNT (Bantuan Pangan Non Tunai) bermaksud memangkas biaya pangan dan membagikan gizi yang sepadan terhadap KPM (Keluarga Penerima Manfaat). Penelitian ini menerapkan algoritma K-Means untuk menganalisis pola karakteristik penerima BPNT di Pekanbaru. Data yang digunakan berasal dari penelitian sebelumnya oleh Firza Syahputra dan dari Dinas Sosial Kota Pekanbaru tahun 2020-2021 dengan 732 data dan 41 parameter. Penerapan K-Means dilakukan melalui Google Colab. Melalui data mining dan metode clustering, ditemukan dua klaster dengan 666 data dalam klaster 1 dan 16 data dalam klaster 2. Evaluasi menggunakan Silhouette Score menunjukkan hasil yang baik, dengan nilai 0.9169796594018274. Penelitian ini berpotensi membantu pemerintah dalam mengambil keputusan yang efektif selama penyebaran bantuan pangan non tunai kepada rakyat yang membutuhkan. Dengan demikian, algoritma K-Means Clustering dapat mengidentifikasi pola karakteristik penerima BPNT dan membedakan kelompok yang layak dan tidak layak menerima bantuan.Poverty issues in various parts of Indonesia are the focus of attention. The NCFA (Non-Cash Food Assistance) program's purpose are to lower food consumption and give Beneficiary Families (BF) a healthy diet. The k-means technique use in this study to assess the distinctive patterns of NCFA grantees in Pekanbaru. The data used comes from previous research by Firza Syahputra and from Social Affairs Office Pekanbaru in 2020-2021 with 732 data and 41 parameters. The application of k-means is done through Google Colab. Through data mining and clustering methods, two clusters were found with 666 data in cluster 1 and 16 data in cluster 2. Evaluation using Silhouette Score showed good results, with a value of 0.9169796594018274. This research has the potential to assist the government in making effective decisions in distributing non-cash food help people in need. For the result, the k-means Clustering technique is able to recognize the traits of NCFA recipients and identify groups that are and are not eligible for aid.
Penerapan Learning Vector Quantization 3 Dalam Menentukan Bakat Anak Agung Syaiful Rahman; Elvia Budianita; Reski Mai Candra; Fadhilah Syafria
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 5, No 3 (2022): Juni 2022
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v5i3.4398

Abstract

Abstrak - Banyaknya bakat anak yang tidak diketahui oleh sebagian besar Orang tua di Indonesia dikarenakan sedikitnya ahli anak sebagai tempat untuk konsultasi yang menjadi faktor utama dalam perMasalahan ini. Tujuan dari penelitian ini ialah agar para Orang tua dapat mempermudah dalam menggali potensi dalam diri anak mereka masing-masing, yakni dengan menggunakan jaringan saraf tiruan. Ada beberapa metode dalam jaringan saraf tiruan,  learning vector quantization 3 merupakan saah satu dari bagian tersebut. Bakat anak yang diambil merupakan bakat anak yang berdasarkan standar United State of Education America. Anak yang diteliti merupakan murid dari Sekolah Dasar Negeri 011 Titian Resak dengan rentang usia 10-12 tahun. Penelitian ini menunjukkan bahwa learning vector quantization 3 membutuhkan sedikitnya 5 kriteria dengan 30 variabel bakat anak sebagai dasar dari penelitian ini. Berdasarkan hasil yang didapatkan, sistem ini berhasil mengidentifikasi bakat anak dengan rentang pembagian 90% data latih dan 10% data uji dan parameter window (0.1,0.2,0.3), epsilon (0.1,0.2,0.3), alpha (0.1) sebesar 81.82%.Kata kunci : Bakat Anak, Learning Vector Quantization 3, Jaringan Saraf Tiruan Abstract - The number of children's taents that are not known by most parents in Indonesia is due to the lack of child experts as a place for consultation which is the main factor in this problem. The purpose of this research is that parents can make it easier to explore the potentia in their respective children, namely by using artificia neura networks. There are severa methods in artificia neura networks, learning vector quantization 3 is one of them. The taent of the child taken is the child's taent based on the standards of the United State of Education America. The children studied were students from the 011 Titian Resak State Elementary School with an age range of 10-12 years. This study shows that learning vector quantization 3 requires at least 5 criteria with 30 variables of children's taents as the basis of this research. Based on the results obtained, this system succeeded in identifying children's taents with a distribution range of 90% of training data and 10% of test data and parameters window (0.1.0.2.0.3), epsilon (0.1.0.2.0.3), apha (0.1) of 81.82% .Keyword : Child Talent, Learning Vector Quantization 3, Artificia Neura Network