Claim Missing Document
Check
Articles

Found 27 Documents
Search

Riset Operasional Berbasis Permainan Android dengan Metode Simplex pada UD. Dieva Cake Ghoffar, Alghifar Abdul; Nudin, Salamun Rohman
Journal of Emerging Information Systems and Business Intelligence Vol. 3 No. 1 (2022)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jeisbi.v3i1.44166

Abstract

Dieva Cake merupakan perusahaan yang bergerak dibidang produksi kue dan jajanan tradisional. Proses perhitungan pada produksi UD. Dieva Cake mengunakan cara pembagian sederhana tanpa adanya perhitungan dalam jumlah produksi tiap kue. Pemilik perusahaan tidak mengetahui metode untuk perhitungan keuntungan maksimal dan pada proses penerapan metode tersebut perusahaan kesulitan dikarenakan masih terlalu awam dengan metode perhitungan keuntungan maksimal. Hal ini menyebabkan setiap proses produksi perusahaan tidak mengetahui apakah keuntungannya sudah optimal atau tidak.Penelitian ini mengimplementasikan metode perhitungan keuntungan maksimal berupa metode simpleks dan untuk mengatasi keterbatasan pengguna dalam menggunakan metode tersebut maka penelitian ini menghasilkan program dengan bentuk aplikasi permainan agar mudah diterima oleh perusahaan. Berdasarkan target pengguna, metode simpleks yang berbentuk tabel dan rumus dibuat dengan model dialog. Pengguna hanya tinggal menjawab pertanyaan dan hasil perhitungan keuntungan maksimal akan muncul. Terdapat juga soal cerita untuk menggambarkan bagaimana metode simpleks diimplementasikan. Percobaan penggunaan aplikasi ini pada lima level permainan mendapatkan hasil seluruh perhitungan akurat dimana perhitungan yang tepat tersebut menjadi jawaban di setiap level permainan. Dari uji coba yang dilakukan untuk menghitung 5 pertanyaan cerita pada aplikasi mendapatkan hasil yang benar pada seluruhan uji coba. Dari uji coba pengguna dengan subjek tes pemilik perusahaan dan karyawan menggunakan skala likert mendapatkan nilai penerimaan pengguna dengan persentase rata rata sebesar 79,44%.
Analisis Kepuasan Pengguna Aplikasi JConnect Mobile Menggunakan Metode End User Computing Satisfaction (EUCS) dan Importance Performance Analysis (IPA) Qholisa, Siti Nur; Nudin, Salamun Rohman
Journal of Emerging Information Systems and Business Intelligence Vol. 4 No. 2 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jeisbi.v4i2.54974

Abstract

Pengembangan Sistem Informasi Persediaan Barang Di Cv. Nusantara List Supplay Menggunakan Metode FIFO Berbasis Website Dengan Framework Laravel Asyadana, Aldi Naufal; Nudin, Salamun Rohman
Journal of Emerging Information Systems and Business Intelligence (JEISBI) Vol. 5 No. 1 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jeisbi.v5i1.58935

Abstract

Personality Prediction Based on Video Using Transfer Learning DeepID Model Pradana, Handika Dio; Nudin, Salamun Rohman
bit-Tech Vol. 8 No. 1 (2025): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v8i1.2866

Abstract

This research presents an automatic personality prediction system based on the Big Five model openness, conscientiousness, extraversion, agreeableness, and neuroticism by leveraging transfer learning on the DeepID architecture. Video input is first processed with the MTCNN algorithm for robust facial region detection under varying lighting and poses. Extracted features are fed into a modified DeepID model, pre-trained on large-scale face-recognition datasets, to perform spatial encoding. To capture temporal dynamics, Long Short-Term Memory (LSTM) networks model frame-to-frame changes in expression. Training and validation use the ChaLearn LAP dataset of approximately 10,000 annotated videos. Experimental results demonstrate 88.6% overall accuracy, with an average precision of 87.2%, recall of 86.5%, and F1-score of 86.8%, confirming the model’s balanced performance across classes. A minimum loss of 11.3% further underscores effective convergence. The complete pipeline is deployed via Flask, enabling real-time, web-based integration. Beyond academic novelty, this system holds promise for practical applications: in recruitment, it can offer unbiased, rapid personality screening; in mental-health contexts, it may assist clinicians by flagging behavioral cues non-invasively; and in human–computer interaction, adaptive interfaces could personalize responses based on users’ inferred traits. By combining transfer learning with temporal modeling, our approach delivers a scalable, non-invasive tool for automated psychological assessment through visual data, paving the way for ethical, real-time personality analytics in diverse domains.
Implementasi MTCNN dan Transfer Learning Model DeepFace untuk Prediksi Kepribadian Berbasis Video Alamsyah, Shandy Ilham; Nudin, Salamun Rohman
Techno.Com Vol. 24 No. 3 (2025): Agustus 2025
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v24i3.13084

Abstract

Kepribadian adalah aspek penting yang mempengaruhi pilihan hidup, karir, kinerja, kesehatan, dan juga preferensi atau keinginan seseorang. Model Big-Five Personality adalah yang paling umum, namun pengukurannya masih secara konvensional melalui kuesioner, hal ini memiliki beberapa keterbatasan seperti adanya potensi manipulasi jawaban oleh responden sehingga mempengaruhi hasil dari pengukuran kepribadian tersebut. Untuk mengatasi keterbatasan tersebut, penelitian ini bertujuan untuk mengembangkan sistem untuk melakukan pengukuran atau prediksi kepribadian menggunakan Deep Learning untuk mendeteksi kepribadian berdasarkan ekspresi wajah dalam sebuah video perkenalan. Model yang dikembangkan mencapai akurasi 90.04% dengan loss terendah 9.95%, menunjukkan kemampuannya dalam memprediksi kepribadian secara konsisten. Sistem ini dibangun dengan framework Flask dan mampu menghasilkan prediksi kepribadian seseorang. Dengan demikian penggunakan Deep Learning berpotensi menjadi alat yang efektif dalam pengembangan teknologi di bidang psikologi, menjadikannya alat yang transformatif untuk mengukur kepribadian seseorang dengan lebih efektif di masa depan.   Keywords - Big-Five Personality, Deep Learning, MTCNN, DeepFace, deteksi kepribadian
Prediksi Kepribadian Menggunakan Transfer Learning Model VGG-Face Berbasis Video Arifin, Achmad Nurs Syururi; Nudin, Salamun Rohman
JATISI Vol 12 No 3 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v12i3.12088

Abstract

This study aims to develop an personality prediction system based on the Big Five Personality model using Transfer Learning with VGG-Face on video data. This research is significant as accurate personality prediction can be applied in various fields, such as behavior analysis. In this study, the pre-trained VGG-Face model, along with two LSTM layers followed by several Dense and Dropout layers, is used for facial feature extraction from video. These features are then used to predict personality across five key dimensions: openness, conscientiousness, extraversion, agreeableness, and neuroticism. The study uses secondary data from the ChaLearn Looking at People (LAP) dataset, which was utilized in the CVPR 2017 competition and includes approximately 10,000 videos. The model is evaluated using the Mean Absolute Error (MAE) metric, which is then converted into regression accuracy. The evaluation results show strong performance with accuracy: Training: 91.75%, Validation: 90.39%, and Testing: 90.28%. The results show that the model has consistency and the ability to generalize well to data it has never encountered before.
Sistem Klasifikasi Tingkat Kesesuaian Bibit Dan Pupuk Dengan Algoritma C4.5 Berbasis Website (Studi Kasus : Kecamatan Megaluh) Panji Sulanggalih, Mochammad; Rohman Nudin, Salamun; Augusta Jannatul Firdaus, Reza
Inovate Vol 6 No 1 (2021): September
Publisher : Fakultas Teknologi Informasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33752/inovate.v6i1.3159

Abstract

Selection of suitable seeds and fertilizers will greatly affect the level of plant fertility This research was conducted to classify the types of seeds and fertilizers accordingly, in order to obtain high levels of fertility and crop yields. The attributes used in this study were the type of seed, type of soil, type of pest, type of disease, and type of fertilizer. This study uses the Classification Decision Tree method with the C4.5 Algorithm, which is one of the methods in data mining. This method is used to obtain a set of tree-shaped patterns that can separate data classes from one another, which are used for decision making. The result of this research is a website-based system, so that it can be accessed by all users. This system can be used to classify the appropriate types of seeds and fertilizers based on the rules formed by the C4.5 calculation process. From the test results with the number of training data 499 data, the first root that was formed was fertilizer with a gain value of 0.142. The rule that is formed from the test results is that there are 173 rules that match, 120 rules are very suitable. And from 125 test data, there are 108 correct data and 17 error data, with the correct data percentage is 86.4% and the percentage of error data is 13.6%. Keywords : Classification, Decision Tree, C4.5 Algorithm, Agricultural Seed and Fertilizer, Website.