Claim Missing Document
Check
Articles

Found 12 Documents
Search

EFFECT OF A SCALED CANTILEVER BEAM ON NATURAL FREQUENCY Jhon Malta; Arif Gunawan; Lovely Son
Jurnal Rekayasa Mesin Vol. 14 No. 2 (2023)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v14i2.1266

Abstract

This paper deals with the scaling factor's effect on the cantilever beam's natural frequency. Scaling a prototype dimension will make it easier to manufacture and test the dynamic characteristics of structures with enormous sizes. Natural frequency is one of the essential parameters of the vibration characteristics of the system. The phenomenon that often occurs in vibrating structures is the resonance phenomenon. Resonance is a system state in which an abnormally large vibration is generated in response to an external stimulus, happening when the frequency of the disturbance is equal to, or nearly identical to, the natural frequency of the system. This research investigates the scale factor on natural frequency using the analytical method using Euler-Bernoulli beam theory, the MSC Nastran/Patran software, and experimental testing using an impact hammer on a cantilever beam. The three methods were applied to beams with four scaling variations: 1:1, 1:2.04, 1:2.85, and 1:3.48. Based on the results, the natural frequencies increase by the size scale reduction value in the modeling. The natural frequency value in the actual structure has a value equivalent to 1/S of the natural frequency value of the scale, whereas S is defined as the downgrade scale value. This result follows the Similitude theory.
Effect of Trigger Configuration on Crash Box Energy Absorption in Vehicle Collisions using MSC Dytran Satria, Eka; Saputra, Dendi Adi; Dahlan, Hendery; Son, Lovely; Saputra, M. Fazri Irwan; Afrinaldi, Feri; Susanti, Lusi; HG, Sabri Haris
METAL: Jurnal Sistem Mekanik dan Termal Vol. 9 No. 1 (2025): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/metal.9.1.38-45.2025

Abstract

Vehicle crashworthiness is a critical aspect of automotive safety engineering designed to minimize injury to occupants during collisions. This paper investigates the role of trigger mechanisms in enhancing crashworthiness by managing energy absorption and deformation during impact. Trigger mechanisms, including structural features like grooves, holes, or geometric discontinuities, initiate controlled deformation, optimizing energy dissipation. This study evaluates the effectiveness of crash boxes with various cross sections and six trigger designs: bead initiator, diamond notch, smaller thickness, circular notch, circular holes, and oval holes, to absorb energy of collision using computational software, MSC Dytran. The results show that a crash box with an octagonal section absorbs more energy than those with square, rectangular, or hexagonal sections. Among the introduced trigger designs, the models of bead initiator, circular notches, and circular holes were considerably the most effective in energy absorption.