Claim Missing Document
Check
Articles

Found 7 Documents
Search

SPATIAL AUTOREGRESSIVE DATA PANEL UNTUK MEMODELKAN KEMISKINAN DI PULAU JAWA Hengki Muradi; Kurniawan Atmadja
JURNAL SAINTIKA UNPAM Vol 4, No 1 (2021)
Publisher : Program Studi Matematika FMIPA Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jsmu.v4i1.8427

Abstract

Kemiskinan masih menjadi masalah di seluruh negara di dunia hingga abad ke-21 ini. Penelitian ini bertujuan untuk pengembangan model spasial autoregressive (SAR) data panel efek tetap dan implementasinya untuk memodelkan kemiskinan di pulau Jawa. Data yang digunakan pada penelitian ini adalah data sekunder yang diperoleh dari Badan Pusat Statistik (BPS) Indonesia, Bank Indonesia, dan sumber relevan lainnya. Variabel dependen adalah tingkat kemiskinan sedangkan variabel independent adalah UMK, Inflasi, PDRB, dan IPM. Data dianalisis menggunakan model SARS data panel efek tetap. Hasil penelitian menunjukkan bahwa model SAR data panel dengan efek tetap wilayah dan waktu merupakan model terbaik dengan R2 = 99,43% dan nilai AIC dan BIC terkecil serta pada model tidak terjadi masalah autokorelasi. Estimasi parameter λ = 0,238 dan p-value = 0,013 < 0,05 yang berarti pada taraf nyata 5% terdapat pengaruh signifikan antar wilayah tingkat kemiskinan di Pulau Jawa periode tahun 2015-2018. Variabel UMK dan variabel PDRB berkontribusi positif terhadap tingkat kemiskinan di Pulau Jawa namun tidak signifikan. Variabel inflasi dan IPM berkontribusi negatif terhadap tingkat kemiskinan di Pulau Jawa namun juga tidak signifikan.
PELABELAN HARMONIS PADA GRAF TANGGA SEGITIGA PITA Kurniawan Atmadja
JURNAL SAINTIKA UNPAM Vol 4, No 1 (2021)
Publisher : Program Studi Matematika FMIPA Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jsmu.v4i1.10334

Abstract

Graf G(V,E) terdiri dari himpunan tak kosong simpul Vdan himpunan busur E. Banyak simpul dinotasikan dengan |V|, dan banyak busur dinotasikan dengan |E|. Pelabelan harmonis mensyaratkan banyak simpul tidak melebihi banyak busur. Pelabelan harmonis adalah fungsi injektif f dari himpunan simpul ke himpunan bilangan bulat modulo |E| yang membangkitkan fungsi bijektif f^⋆dari himpunan busur ke himpunan bilangan bulat modulo |E| dengan f^⋆ (xy)=f(x)+f(y)(mod|E|) yang menghasilkan label busur yang berbeda. Graf tangga segitiga pita diperoleh dari hasil graf tangga segitiga 〖LS〗_n yang bentuknya diputar balik seperti bentuk belah ketupat, lalu disusun dengan mempertemukan satu simpul pada satu simpul di salah satu sudutnya, dan dengan menambahkan satu busur secara berselang seling, sedemikian sehingga berzigzag memanjang menyerupai pita. Telah diketahui bahwa graf tangga segitiga 〖LS〗_n adalah graf harmonis. Pada paper ini ditunjukan bahwa graf tangga segitiga pita  juga merupakan graf harmonis.
PELABELAN HARMONIS PADA GRAF SEGITIGA BELAH KETUPAT VARIASI LMn Evi Maharani; Kurniawan Atmadja
Pattimura Proceeding 2021: Prosiding KNM XX
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1175.216 KB) | DOI: 10.30598/PattimuraSci.2021.KNMXX.161-164

Abstract

PELABELAN HARMONIS PADA GRAF TANGGA SEGITIGA PITA Kurniawan Atmadja
JURNAL SAINTIKA UNPAM Vol 4, No 1 (2021)
Publisher : Program Studi Matematika FMIPA Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jsmu.v4i1.10334

Abstract

Graf G(V,E) terdiri dari himpunan tak kosong simpul Vdan himpunan busur E. Banyak simpul dinotasikan dengan |V|, dan banyak busur dinotasikan dengan |E|. Pelabelan harmonis mensyaratkan banyak simpul tidak melebihi banyak busur. Pelabelan harmonis adalah fungsi injektif f dari himpunan simpul ke himpunan bilangan bulat modulo |E| yang membangkitkan fungsi bijektif f^⋆dari himpunan busur ke himpunan bilangan bulat modulo |E| dengan f^⋆ (xy)=f(x)+f(y)(mod|E|) yang menghasilkan label busur yang berbeda. Graf tangga segitiga pita diperoleh dari hasil graf tangga segitiga 〖LS〗_n yang bentuknya diputar balik seperti bentuk belah ketupat, lalu disusun dengan mempertemukan satu simpul pada satu simpul di salah satu sudutnya, dan dengan menambahkan satu busur secara berselang seling, sedemikian sehingga berzigzag memanjang menyerupai pita. Telah diketahui bahwa graf tangga segitiga 〖LS〗_n adalah graf harmonis. Pada paper ini ditunjukan bahwa graf tangga segitiga pita  juga merupakan graf harmonis.
SPATIAL AUTOREGRESSIVE DATA PANEL UNTUK MEMODELKAN KEMISKINAN DI PULAU JAWA Hengki Muradi; Kurniawan Atmadja
JURNAL SAINTIKA UNPAM Vol 4, No 1 (2021)
Publisher : Program Studi Matematika FMIPA Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jsmu.v4i1.8427

Abstract

Kemiskinan masih menjadi masalah di seluruh negara di dunia hingga abad ke-21 ini. Penelitian ini bertujuan untuk pengembangan model spasial autoregressive (SAR) data panel efek tetap dan implementasinya untuk memodelkan kemiskinan di pulau Jawa. Data yang digunakan pada penelitian ini adalah data sekunder yang diperoleh dari Badan Pusat Statistik (BPS) Indonesia, Bank Indonesia, dan sumber relevan lainnya. Variabel dependen adalah tingkat kemiskinan sedangkan variabel independent adalah UMK, Inflasi, PDRB, dan IPM. Data dianalisis menggunakan model SARS data panel efek tetap. Hasil penelitian menunjukkan bahwa model SAR data panel dengan efek tetap wilayah dan waktu merupakan model terbaik dengan R2 = 99,43% dan nilai AIC dan BIC terkecil serta pada model tidak terjadi masalah autokorelasi. Estimasi parameter λ = 0,238 dan p-value = 0,013 < 0,05 yang berarti pada taraf nyata 5% terdapat pengaruh signifikan antar wilayah tingkat kemiskinan di Pulau Jawa periode tahun 2015-2018. Variabel UMK dan variabel PDRB berkontribusi positif terhadap tingkat kemiskinan di Pulau Jawa namun tidak signifikan. Variabel inflasi dan IPM berkontribusi negatif terhadap tingkat kemiskinan di Pulau Jawa namun juga tidak signifikan.
Pelabelan Harmonis pada Graf Tangga Segi Tiga Paku Kurniawan Atmadja; Miftahul Fikri
Limits: Journal of Mathematics and Its Applications Vol 20, No 2 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i2.9078

Abstract

Graf  dapat ditulis , yaitu himpunan tak kosong simpul (vertex) dan himpunan sisi (edge)  Pada graf  diketahui jumlah simpul dan jumlah sisi yang masing - masing dinotasikan dengan  dan   Graf  yang diberi label harmonis selalu mensyaratkan jumlah simpul tidak melebihi jumlah sisi. Pelabelan harmonis adalah fungsi injektif  dari himpunan simpul ke himpunan bilangan bulat modulo  yang membangkitkan fungsi bijektif dari himpunan sisi ke himpunan bilangan bulat modulo  dengan  yang menghasilkan label sisi yang berbeda. Kajian penelitian ini bertujuan untuk menambah koleksi graf harmonis dalam bidang Matematika kombinatorik, khususnya  berkaitan dengan penelitian graf tangga segitiga paku yang berkelanjutan. Graf tangga segitiga paku diperoleh dari hasil graf tangga segitiga   yang mengalami tambahan satu simpul dan dua sisi. Kemudian  dikonstruksi menyusun dan berbaris, sehingga mendapatkan hasil sebuah graf baru yang berbentuk seperti paku yang bersusun, terhubung dan berbaris. Lalu diberi label pada simpul dan sisi. Telah diketahui bahwa graf tangga segitiga  adalah graf harmonis. Pada paper ini ditunjukan bahwa graf tangga segitiga paku juga merupakan graf harmonis.
Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Miftahul Fikri; Christiono Christiono; Iwa Garniwa Mulyana K; Titi Ratnasari; Kurniawan Atmadja; Andi Amar Thahara; Muhammad Luthfiansyah Romadhoni
ELKHA : Jurnal Teknik Elektro Vol. 15 No.2 October 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i2.63601

Abstract

In many electrical networks in Indonesia, insulation failure due to high voltage phenomena like Corona Discharge (CD) still happens. This is a result of our inability to perform early Corona Discharge (CD) identification. This study’s objective is to optimalize the sound properties of Corona Discharge (CD) as a first step throught the early identification of insulation failure in the form of clustering 20 kV cubicle. Based on observations on the needle-rod electrode 3 cm apart, the smallest breakdown was obtained at 34.3 kV. So that the classification of CD sound by 3 clusters starting 20 kV cubicle voltage until before the failure occurs on 33 kV. The temperature in the cubical is between 27.5℃ - 35.3℃ and humidity ranges from 70% - 95%. It was stated in the study that the FcM method was the most widely used and successful method. In this case, FcM can obtain more flexible results that classify data into clusters easily. This research will be carried out using the Fuzzy c-Means (FcM) method. Feature extraction with linear predictive coding (LPC) method, then optimization by using the Fuzzy c-Means (FcM) method which is expected to be used as an initial step for early detection of insulation failure.