Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering: Cluster Analysis of Small Medium Enterprise Performance with K-Means Clustering Algorithm Dona Marcelina; Annisa Kurnia; Terttiaavini Terttiaavini
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 2 (2023): MALCOM October 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i2.952

Abstract

Fokus penelitian ini adalah untuk menyelesaikan masalah yang dihadapi oleh dinas koperasi dan UKM Provinsi Sumatera Selatan, yaitu kesulitan dalam menerapkan program pengembangan usaha bagi UKM. Selama ini dinas koperasi dan UKM Provinsi Sumatera selatan telah melakukan berbagai kegiatan yang berhubungan dengan peningkatan kualitas pengelolaan UKM. Namun karena pendataan UKM kurang lengkap, maka sulit untuk menentukan program terbaik bagi UKM yang dapat mempercepat pengembangan usaha di UKM.  Tujuan dari penelitian ini adalah untuk melengkapi data UKM melalui penyebaran kuesioner dan melakukan mengelompokkan UKM berdasarkan kinerja UKM. Pengelompokan ini nantinya akan digunakan  untuk menyusun strategi pengembangan UKM yang sesuai dan tepat sasaran. Penelitian ini, menggunakan metode K-Means Clustering dengan indikator, yaitu kinerja keuangan, penjualan produk, dan strategi pemasaran sebagai dasar pengelompokkan. Aplikasi KNIME digunakan sebagai alat untuk analisis data, pemrosesan data, pemodelan data, dan visualisasi model yang mudah dan akurat. Hasil analisis data menunjukkan UMKM terbagi menjadi tiga kelompok atau klaster, yaitu UKM mandiri, UKM berkembang, dan UKM binaan. Hasil pengelompokkan ini diharapkan dapat memberikan masukkan yang berguna bagi Dinas Koperasi dan UKM untuk menerapkan program pengembangan strategi yang lebih spesifik yang sesuai dengan karakteristik dari masing-masing klaster.