Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Electronics, Electromedical Engineering, and Medical Informatics

Time Series Classification of Badminton Pose using LSTM with Landmark Tracking Purnama, Bedy; Erfianto, Bayu; Wirawan, Ilo Raditio
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 1 (2025): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i1.488

Abstract

Traditional methods of analyzing badminton matches, such as video movement analysis, are time-consuming, prone to errors, and rely heavily on manual annotation. This creates challenges in accurately and efficiently classifying badminton actions and player poses. This paper aims to develop an accurate time series classification method for badminton poses using landmark tracking. The proposed method integrates Long Short-Term Memory (LSTM) networks with landmark tracking to classify badminton poses in a time series, addressing the limitations of traditional video analysis techniques. The dataset consists of 30 respondents performing three distinct activities—lob, smash, and serve—under two conditions: good and bad execution. The approach combines LSTM networks with landmark tracking data, utilizing intra-class variation from a multi-view dataset to enhance pose classification accuracy. The LSTM model achieved high accuracy in classifying badminton poses, successfully detecting serves, lobs, and smashes in real-time with over 90% accuracy. Additionally, the system improved match analysis, achieving 85% accuracy in detection and classification, demonstrating the effectiveness of combining landmark tracking with machine learning for sports analysis. This study underscores the importance of pose estimation in badminton analysis, particularly through landmark tracking, which significantly improves the accuracy of classifying player poses and contributes to the advancement of automated sports analysis.