Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOURNAL OF SCIENCE AND SOCIAL RESEARCH

PENGEMBANGAN SISTEM KENDALI PENGERINGAN PADI OTOMATIS BERBASIS MULTIMODAL DEEP LEARNING MENGGUNAKAN DATA SENSOR DAN CITRA VISUAL Ramadhani, Andrew; Junaidi, Junaidi; Fitriayu, Suci
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.4052

Abstract

Abstract: Rice drying is a crucial post-harvest stage that affects the quality, shelf life, and economic value of rice. Conventional methods, such as sun drying and timer-based systems, are still predominantly used but are less adaptive to weather changes, often resulting in reduced product quality. This study developed an automated rice drying control system based on multimodal deep learning by integrating visual images and weather sensor data. The YOLOv5 model was used to detect grain conditions with 95% accuracy, while sensor analysis using LSTM and Transformer achieved accuracies of 90% and 93%, respectively. Multimodal integration improved control accuracy to 96% through an automatic roof opening/closing mechanism responsive to weather conditions and grain moisture status. Test results show that this system is more efficient than the baseline method, with an average drying time of 12 hours, moisture content accuracy of ±96%, and 30% lower yield loss. These findings highlight the potential of multimodal deep learning in supporting precision agriculture and modernizing post-harvest processes in Indonesia, while also opening opportunities for developing similar systems for other food commodities to support sustainable food security. Keywords: Rice Drying, Intelligent Control System, Multimodal Deep Learning, Sensor Data, Visual Imagery Abstrak: Pengeringan padi merupakan tahap krusial pascapanen yang memengaruhi mutu, daya simpan, dan nilai ekonomis gabah. Metode konvensional, seperti penjemuran matahari dan sistem berbasis timer, masih dominan digunakan namun kurang adaptif terhadap perubahan cuaca, sehingga sering menurunkan kualitas hasil. Penelitian ini mengembangkan sistem kendali pengeringan padi otomatis berbasis multimodal deep learning dengan mengintegrasikan citra visual dan data sensor cuaca. Model YOLOv5 digunakan untuk mendeteksi kondisi gabah dengan akurasi 95%, sedangkan analisis sensor menggunakan LSTM dan Transformer menghasilkan akurasi masing-masing 90% dan 93%. Integrasi multimodal meningkatkan akurasi kendali menjadi 96% melalui mekanisme buka–tutup atap otomatis yang responsif terhadap kondisi cuaca dan status kekeringan gabah. Hasil uji menunjukkan sistem ini lebih efisien dibandingkan metode baseline, dengan waktu pengeringan rata-rata 12 jam, akurasi kadar air ±96%, serta kehilangan hasil 30% lebih rendah. Temuan ini menegaskan potensi penerapan multimodal deep learning dalam mendukung pertanian presisi dan modernisasi proses pascapanen di Indonesia, sekaligus membuka peluang pengembangan sistem serupa pada komoditas pangan lain untuk mendukung ketahanan pangan berkelanjutan. Kata Kunci: Pengeringan Padi, Sistem Kendali Cerdas, Multimodal Deep Learning, Data Sensor, Citra Visual
PEMBELAJARAN MENDALAM DETEKSI KELELAHAN WAJAH MENGEMUDI BERDASARKAN ALGORITMA YOLOV5 UNTUK MENGHINDARI KECELAKAAN DALAM SISTEM TRANSPORTASI CERDAS Junaidi, Junaidi; Ramadhani, Andrew; Abimanyu, Yogi
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.4093

Abstract

Abstract: Traffic accidents due to driver fatigue are a serious problem in transportation systems, especially in Indonesia. This research aims to develop a computer vision-based early warning system capable of detecting driver fatigue in real-time through facial expressions. This system integrates the YOLOv5 algorithm for face detection, EAR (Eye Aspect Ratio) and MAR (Mouth Aspect Ratio) for eye blink and mouth movement analysis, CNN (Convolutional Neural Network) for fatigue expression classification, and LSTM (Long Short-Term Memory) for analyzing the time-varying patterns of facial expressions. Data were obtained from public Kaggle datasets and facial data taken directly from cameras, which were then trained with augmentation techniques to improve model generalization. Test results show that the system is able to achieve validation accuracy of up to 90.5% and a confidence score of 97.9% for sleepy face detection. This system successfully recognizes sleepiness through EAR and MAR patterns and expression classification with real-time performance, and can be implemented efficiently on minicomputer devices. This research contributes to improving driving safety through early detection of driver fatigue in intelligent transportation systems.Keyword: drowsiness detection; YOLOv5; CNN; LSTM; EAR & MAR; facial expression; intelligent transportationAbstrak: Kecelakaan lalu lintas akibat kelelahan pengemudi menjadi permasalahan serius dalam sistem transportasi, khususnya di Indonesia. Penelitian ini bertujuan untuk mengembangkan sistem peringatan dini berbasis visi komputer yang mampu mendeteksi kondisi kelelahan pengemudi secara real-time melalui ekspresi wajah. Sistem ini mengintegrasikan algoritma YOLOv5 untuk deteksi wajah, EAR (Eye Aspect Ratio) dan MAR (Mouth Aspect Ratio) untuk analisis kedipan mata dan gerakan mulut, CNN (Convolutional Neural Network) untuk klasifikasi ekspresi lelah, serta LSTM (Long Short-Term Memory) untuk menganalisis pola perubahan waktu dari ekspresi wajah. Data diperoleh dari dataset public kaggle dan data wajah yang di ambil langsung dari kamera, yang kemudian dilatih dengan teknik augmentasi untuk meningkatkan generalisasi model. Hasil pengujian menunjukkan bahwa sistem mampu mencapai akurasi validasi hingga 90,5% dan confidence score deteksi wajah mengantuk sebesar 97,9%. Sistem ini berhasil mengenali kondisi kantuk melalui pola EAR dan MAR serta klasifikasi ekspresi dengan performa real-time, dan dapat diimplementasikan secara efisien di perangkat mini-komputer. Penelitian ini berkontribusi dalam meningkatkan keselamatan berkendara melalui deteksi dini kelelahan pengemudi dalam sistem transportasi cerdas.Kata kunci: deteksi kantuk; YOLOv5; CNN; LSTM; EAR & MAR; ekspresi wajah; transportasi cerdas