Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JURNAL REKAYASA KIMIA

Sodium Hydroxide Treatment for Cellulose Fiber Accessibility from Corncobs under Microwave Assistive Muhammad Hanif; Aknasasia Virginia Krisanti; Selvy Salfitri; Yuli Darni; Herti Utami; Edwin Azwar; Poernomo Gunawan
Jurnal Rekayasa Kimia & Lingkungan Vol 16, No 2 (2021): Jurnal Rekayasa Kimia & Lingkungan (December, 2021)
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23955/rkl.v16i2.20061

Abstract

Corncob is abundantly available lignocellulosic biomass resources obtained from crops harvesting and found to be solid waste accumulation on a field. Less corncob is used as a solid fuel for cooking, and a more significant portion is vanished on the field by burning. Promisingly, corncob contains considerable cellulose as one value-added component potentially utilized as biomaterial or biofuel feedstock. However, the presence of lignin in natural lignocellulosic biomass results in recalcitrant structure and hinders cellulose accessibility. This study aimed to investigate microwave-assisted alkaline treatment to retain cellulose in the solid product while removing other impurities in corncob, especially hemicellulose and lignin. Sodium hydroxide was selected as a chemical with some variations in concentration. The chemical treatment was carried out under 400 W microwave power with various residence times and a 1:10 solid to liquor ratio. The cellulose content upgraded from 26.97% to 71.26% while reducing hemicellulose and lignin from 38.49% to 18.15% and 19.28% to 6.4%, respectively, on chemical treatment using 8% sodium hydroxide concentration for 20 minutes residence time. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) analysis also confirmed the results. The treated corncob also increased its crystallinity from 30.11% to 52.91%.
The Leaching of Natural Dyes from Avocado (Persea Americana Mill) Seeds Using the Ultrasonic-Assisted Extraction Method and Its Application to Cellulose Fibers Herti Utami; Veni Tri Agustin; Luthfiah Novirianti; Yuli Darni; Donny Lesmana; Ryosuke Takagi
Jurnal Rekayasa Kimia & Lingkungan Vol 16, No 2 (2021): Jurnal Rekayasa Kimia & Lingkungan (December, 2021)
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23955/rkl.v16i2.20140

Abstract

The textile industry uses synthetic dyes because they are cheaper and easier to obtain. Moreover, the color availability is guaranteed and more varied. However, these synthetic dyes have a negative impact on health and the environment. The natural dye from avocado (Persea Americana Mill) seeds can become an alternative for synthetic dyes. Polyphenol compounds, such as tannins and flavonoids, are natural color sources found in avocado seeds. The extraction of natural dyes from avocado seeds is carried out by using a non-conventional method, namely ultrasonic-assisted extraction which has great efficiency and short operating time. In this study, researchers examined the parameters that affect the yield of dye extraction from avocado seeds, namely solvent concentration and extraction time. In addition, researchers also conducted qualitative analysis on the pigment content in the yield of extraction using UV-Visible Spectrophotometry and GC-MS tests. The results indicated that the highest yield obtained from avocado seeds was 16.6742% with 90 minutes extraction time using 70% ethanol solvent. Furthermore, if the dye is applied to cellulose fibers, such as the cotton cloth, the color will change depending on the fixator added. Based on the result of the UV-Visible Spectrophotometry test, the avocado seeds contain flavonoids. Meanwhile, from the result of the GC-MS test, the compound with the largest percentage detected in avocado seeds is the 13-Tetradecynoic acid, methyl ester (C15H26O2). The compound contains a chromophore, such as a carbonyl group (C = O) which is a common feature of flavonoids.