Claim Missing Document
Check
Articles

Found 12 Documents
Search

3.5 GHz Rectangular Patch Microstrip Antenna with Defected Ground Structure for 5G PARAGYA, DHATU; SISWONO, HARTONO
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 1: Published January 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i1.31

Abstract

ABSTRAKPada penelitian ini telah dilakukan perancangan dan implementasi antena mikrostrip untuk aplikasi generasi kelima (5G) pada frekuensi 3.5 GHz. Parameter yang diinginkan berdasarkan pada posisi kebijakan publik Huawei, posisi kebijakan publik Qualcomm, dan artikel 3rd Generation Partnership Project (3GPP) Rel-15. Antena mikrostrip memiliki bandwidth yang sempit, oleh karena itu beberapa modifikasi digunakan, yaitu teknik proximity coupled dan defected ground structure (DGS). Tahap pertama adalah menghitung dimensi awal antena, kemudian disimulasikan menggunakan HFSS Ansoft. Simulasi dimulai dari simulasi dimensi awal, menambahkan teknik proximity coupled, dan penerapan DGS hingga parameter antena yang diinginkan tercapai. Aktivitas pengukuran dilakukan setelah simulasi dan optimasi telah selesai dikerjakan. Hasil dari pengukuran, gain bertambah menjadi 6.6 dB, bandwidth berkurang sebesar 65.2 MHz, Voltage Standing Wave Ratio (VSWR) dan return loss masing-masing 1.31 dan -17.436 dB. Kata kunci: antena mikrostrip, proximity coupled, DGS, 5G, 3.5 GHzABSTRACT This research has performed the design and implementation of microstrip antenna for fifth generation (5G) application, at frequency 3.5 GHz. The desired parameters are based on Huawei public policy position, Qualcomm public policy position, and Rel-15 3rd Generation Partnership Project (3GPP) article. Since microstrip antenna has narrow bandwidth, some modification are conducted, namely proximity coupled feeding and defected ground structure (DGS). The first stage is calculating the initial dimension of the antenna, finally the antenna is simulated and optimized. The simulation starts from simulating the initial dimension, then applying the proximity coupled feeding, after that employing the DGS until the desired antenna is achieved. The final stage is fabricate the antenna based on simulation then measure it. The measurement results show that the gain is increased to 6.6 dB, the bandwidth is reduced by 65.2 MHz, the Voltage Standing Wave Ratio (VSWR) and return loss are 1.31 and -17.436 dB. Keywords: microstrip antenna, proximity coupled, DGS, 5G, 3.5 GHz
Design of Fir Digital Bandpass Filter with Hamming Window and Hanning Window Method for Fetal Doppler Siswono, Hartono; Widyastuti, Widyastuti; Dovan, Yohanes; Nur’ainingsih, Dyah
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 4 (2023): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i4.26849

Abstract

Fetal heart rate using Doppler Ultrasound is a standard method to assess fetal health. Examination of the fetal heart with a Doppler device is more convenient for women. Fetal Doppler can accidentally take the mother's heartbeat. A filter is needed to enhance the audibility of fetal heartbeats while suppressing unwanted frequencies and noise. The normal fetal heart rate ranges from 120 to 160 beats per minute, or 2 Hz - 3 Hz. This frequency can be filtered using a bandpass filter. the digital FIR bandpass filter were created using the Hamming and Hanning window methods. The results of the FIR filter with the Hamming and Hanning window, Orde 100 Hanning gave the best frequency bandwidth range which was 1.833 Hz to 3.167 Hz. Orde 20 Hamming and Hanning had the shortest delay +- 2 s and Orde 100 Hamming and Hanning had the longest delay +- 6s. For the noise at 1.6 Hz, Orde 100 Hamming and Orde 100 Hanning the signal level of the signal output is the same as the desired signal level. For the noise at 3.1 Hz, Orde 100 Hamming and Orde 100 Hanning had the signal level of the signal output is almost the same as the desired signal level. At the frequency point of 1.6 Hz, the noise signal at the input has a magnitude response 2533, it is a decrease after passing through the filter to = 0. At the frequency point of 3.1 Hz, the noise signal at the input has a magnitude response 2246, and there is a decrease after passing through the filter to 167.7. From this study, we can choose 100 orde Hanning because it gave the best frequency bandwidth range which was 1.833 Hz to 3.167 Hz, the delay of +- 6s.