Vijay Anant Athavale
Walchand Institute of Technology, Solapur, INDIA

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

INCU Analyzer for Infant Incubator Based on Android Application Using Bluetooth Communication to Improve Calibration Monitoring Vijay Anant Athavale; Abhilash Pati; A K M Bellal Hossain; Sari Luthfiyah; Triwiyanto Triwiyanto
Jurnal Teknokes Vol 15 No 1 (2022): March
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i1.1

Abstract

Worldwide, over 4 million babies die within a month of birth each year. Of these, 3.9 million are in developing countries. A proportion approximately 25% of these deaths are due to complications of premature birth, most commonly inadequate thermoregulation, water loss, and neonatal jaundice. An infant incubator provides stable temperature, relative humidity, and airflow values. A periodical calibration should be applied on infant incubator to monitor the functionality. The study aims to develop a calibration device that measures temperature, humidity, airflow, and noise in the baby incubator based on an Android application with Bluetooth communication to improve the calibration monitoring process. This is to achieve a better performance of the conventional INCU analyzer. The contribution of this research is that the values of the temperature, humidity, airflow, and noise can be displayed on both devices, the INCU analyzer machine, and mobile phone; thus, the user can monitor the measurement activities wirelessly. Furthermore, the statistical calculation for all measurements can be saved on a mobile phone device. The main design consists of temperature sensor LM35, humidity sensor DHT22, airflow sensor MPX5010DP, an analog signal conditioning circuit, an Arduino Mega microcontroller, Bluetooth module HC05, and Android mobile phone. The resulting design was compared to the standard or calibrator INCU analyzer machine (Fluke Biomedical INCU II). This study found that the smallest error is -1.72%°C, -0.106 % RH, -1.727% dB, and <0.1% m/s for temperature, humidity, noise, and airflow parameters, respectively. After the evaluation process, this device can be used as an INCU analyzer to calibrate the infant incubator.
Brake Current Control System Modeling Using Linear Quadratic Regulator (LQR) and Proportional integral derivative (PID) Anggara Trisna Nugraha; Oktavinna Dwi Pratiwi; Reza Fardiyan As’ad; Vijay Anant Athavale
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.6

Abstract

This paper provides a comparative analysis between PID control as a classical control technique and modern control technique in the dinamometer Eddy current brakes system. Eddy current brakes is a modern braking system that requires a control system to support the braking performance. PID control is often used to be implemented but in some conditions it is less optimal. Therefore, it is necessary to develop a modern and optimal control, such as a full state feedback Linear Quadratic Regulator (LQR). The comparison of the braking time responses were simulated using Matlab/Simulink. The simulation results show that the response of LQR control is better than the PID, with Ts = 2.12 seconds, Tr = 1.18 seconds, and without overshoot. On the other side, PID control, although having Ts = 0.27 seconds and Tr = 0.18 seconds, there is still an overshoot about 0.7%.
QRS Complex Detection On Heart Rate Variability Reading Using Discrete Wavelet Transform Arga Wihantara; I Dewa Gede Hariwisana; Andjar Pudji; Sari Luthfiyah; Vijay Anant Athavale
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.236

Abstract

Heart Rate Variability or heart rate in humans is used to monitor the heart rate in humans, the function of the heart rate monitor is to monitor the human heart rate. The purpose of making this tool is to compare the results of heart rate readings using the discrete wavelet transform method to facilitate the detection of R peak. This can be learned by evaluating and studying each decomposition result from level 1 to level 4 on Discrete Wavelet Transform processing using Haar mother wavelets. This study uses a raspberry pi 3B as a microcontroller as a data processor that is obtained from the ECG module. From this study, it can be concluded that in heart rate readings, level 2 decomposition details coefficient has the best value as data processing that helps for heart rate readings with an error value of 0.531%, HRV readings of 0.005 in comparison with phantom tools and a standard deviation of 0.039. The advantage of this tool is a good precision value in HRV and BPM readings. In reading the HRV of the respondent, it was found that each initial condition of the patient's HRV would be high due to the respondent's unstable condition. The disadvantage of this tool is that there is a delay in running the program, there is no display in the form of a signal in real time.