Abhilash Pati
Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, INDIA

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

INCU Analyzer for Infant Incubator Based on Android Application Using Bluetooth Communication to Improve Calibration Monitoring Vijay Anant Athavale; Abhilash Pati; A K M Bellal Hossain; Sari Luthfiyah; Triwiyanto Triwiyanto
Jurnal Teknokes Vol 15 No 1 (2022): March
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i1.1

Abstract

Worldwide, over 4 million babies die within a month of birth each year. Of these, 3.9 million are in developing countries. A proportion approximately 25% of these deaths are due to complications of premature birth, most commonly inadequate thermoregulation, water loss, and neonatal jaundice. An infant incubator provides stable temperature, relative humidity, and airflow values. A periodical calibration should be applied on infant incubator to monitor the functionality. The study aims to develop a calibration device that measures temperature, humidity, airflow, and noise in the baby incubator based on an Android application with Bluetooth communication to improve the calibration monitoring process. This is to achieve a better performance of the conventional INCU analyzer. The contribution of this research is that the values of the temperature, humidity, airflow, and noise can be displayed on both devices, the INCU analyzer machine, and mobile phone; thus, the user can monitor the measurement activities wirelessly. Furthermore, the statistical calculation for all measurements can be saved on a mobile phone device. The main design consists of temperature sensor LM35, humidity sensor DHT22, airflow sensor MPX5010DP, an analog signal conditioning circuit, an Arduino Mega microcontroller, Bluetooth module HC05, and Android mobile phone. The resulting design was compared to the standard or calibrator INCU analyzer machine (Fluke Biomedical INCU II). This study found that the smallest error is -1.72%°C, -0.106 % RH, -1.727% dB, and <0.1% m/s for temperature, humidity, noise, and airflow parameters, respectively. After the evaluation process, this device can be used as an INCU analyzer to calibrate the infant incubator.
Analysis of Dialysate pH and Temperature Stability on Hemodialysis Machines Using Internet of Thing Technology Noviyanto Putera P; Lusiana Lusiana; Endang Dian Setioningsih; Sari Luthfiyah; Abhilash Pati
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i1.267

Abstract

Therapy for kidney replacement with hemodialysis is a treatment that is carried out in patients with Chronic Kidney Failure to survive. The purpose of this study was to determine the stability of the dialysate fluid in the hemodialysis machine by measuring the temperature using the DS18B20 sensor and measuring the dialysate pH using the 4502C sensor on pre and post-hemodialysis. The research method and the manufacture of this module use a pre-experimental research design with the type of research "one group posttest design" the independent variables are the pH value and Dialysate Temperature, the dependent variable is the pH and Temperature Sensor, the control variable is the Traceable Tool. This research made a module using an Esp32 microcontroller system with an LCD that can be monitored with Android via the Internet of Things (IoT) system. 03 and the comparison of the results of the dialysate temperature values ​​at the time of pre and post-obtained the maximum measurement error of 0.2%. From the measurement and analysis data, it can be concluded that there is no effect of pH and temperature values ​​during pre and post hemodialysis.