I.G.B Ngurah Makertihartha
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, Jawa Barat, Indonesia 40132

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Chemical Reaction Engineering

Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell Joko Waluyo; Petric Marc Ruya; Dwi Hantoko; Jenny Rizkiana; I.G.B.N. Makertihartha; Mi Yan; Herri Susanto
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10837.623-631

Abstract

Syngas from biomass gasification is being developed for alternative feedstock in the chemical industry. Palm kernel shell which is generated from palm oil industry can be potentially used as raw material for gasification process. The purpose of this study was to investigate the use of modified natural zeolite catalysts in steam gasification of palm kernel shells. Mordenite type zeolite was modified by acid leaching to be used as a tar cracking catalyst. Steam gasification was conducted at the temperature range of 750–850 °C and the steam to biomass ratio was in the range of 0–2.25. The result showed that steam gasification of palm kernel shell with the addition of zeolite catalyst at 750 °C and steam to biomass ratio 2.25 could reduce tar content up to 98% or became 0.7 g/Nm3. In this study, gasification of palm kernel shells produced syngas with the hydrogen concentration in the range of 52–64% and H2/CO ratio of 2.7–5.7. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Modelling Based Analysis and Optimization of Simultaneous Saccharification and Fermentation for the Production of Lignocellulosic-Based Xylitol Ibnu Maulana Hidayatullah; I G B N Makertihartha; Tjandra Setiadi; Made Tri Ari Penia Kresnowati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.11807.857-868

Abstract

Simultaneous saccharification and fermentation (SSF) configuration offers efficient use of the reactor. In this configuration, both hydrolysis and fermentation processes are conducted simultaneously in a single bioreactor, and the overall processes may be accelerated. However, problems may arise if both processes have different optimum conditions, and therefore process optimization is required. This paper presents a mathematical model over SSF strategy implementation for producing xylitol from the hemicellulose component of lignocellulosic materials. The model comprises the hydrolysis of hemicellulose and the fermentation of hydrolysate into xylitol. The model was simulated for various process temperatures, prior hydrolysis time, and inoculum concentration. Simulation of the developed kinetics model shows that the optimum SSF temperature is 36 °C, whereas conducting prior hydrolysis at its optimum hydrolysis temperature will further shorten the processing time and increase the xylitol productivity. On the other hand, increasing the inoculum size will shorten the processing time further. For an initial xylan concentration of 100 g/L, the best condition is obtained by performing 21-hour prior hydrolysis at 60 °C, followed by SSF at 36 °C by adding 2.0 g/L inoculum, giving 46.27 g/L xylitol within 77 hours of total processing time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).