I.G.B Ngurah Makertihartha
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, Jawa Barat, Indonesia 40132

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Engineering and Technological Sciences

Utilizing Shear Factor Model and Adding Viscosity Term in Improving a Two-Dimensional Model of Fluid Flow in Non Uniform Porous Media Bindar, Yazid; Makertihartha, IGBN; Supardan, M. Dani; Buchori, Luqman
Journal of Engineering and Technological Sciences Vol 39, No 2 (2007)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.337 KB) | DOI: 10.5614/itbj.eng.sci.2007.39.2.3

Abstract

In a packed bed catalytic reactor, the fluid flow phenomena are very complicated because the fluid and solid particle interactions dissipate the energy. The governing equations  were developed in the  forms of  specific  models. The shear factor  model was introduced in the momentum equation for covering the effect  of  flow  and  solid  interactions  in  porous  media.   A  two  dimensional numerical  solution  for  this  kind  of  flow  has  been  constructed  using  the  finite volume  method.  The  porous  media  porosity  was  treated  as  non-uniform distribution  in  the  radial  direction.  Experimentally,  the  axial  velocity  profiles produce  the  trend  of  having  global  maximum  and  minimum  peaks  at  distance very close to the wall. This trend is also accurately picked up by the numerical result. A more comprehensive shear factor formulation results a better velocity prediction than other correlations do. Our derivation on the presence of porous media leads to an additional viscosity term. The effect of this additional viscosity term was investigated numerically. It is found that the additional viscosity term improves  the  velocity  prediction  for  the  case  of  higher  ratio  between  tube  and particle diameters
Utilizing Shear Factor Model and Adding Viscosity Term in Improving a Two-Dimensional Model of Fluid Flow in Non Uniform Porous Media Yazid Bindar; IGBN Makertihartha; M. Dani Supardan; Luqman Buchori
Journal of Engineering and Technological Sciences Vol. 39 No. 2 (2007)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.eng.sci.2007.39.2.3

Abstract

In a packed bed catalytic reactor, the fluid flow phenomena are very complicated because the fluid and solid particle interactions dissipate the energy. The governing equations  were developed in the  forms of  specific  models. The shear factor  model was introduced in the momentum equation for covering the effect  of  flow  and  solid  interactions  in  porous  media.   A  two  dimensional numerical  solution  for  this  kind  of  flow  has  been  constructed  using  the  finite volume  method.  The  porous  media  porosity  was  treated  as  non-uniform distribution  in  the  radial  direction.  Experimentally,  the  axial  velocity  profiles produce  the  trend  of  having  global  maximum  and  minimum  peaks  at  distance very close to the wall. This trend is also accurately picked up by the numerical result. A more comprehensive shear factor formulation results a better velocity prediction than other correlations do. Our derivation on the presence of porous media leads to an additional viscosity term. The effect of this additional viscosity term was investigated numerically. It is found that the additional viscosity term improves  the  velocity  prediction  for  the  case  of  higher  ratio  between  tube  and particle diameters
Exceptional Aromatic Distribution in the Conversion of Palm-Oil to Biohydrocarbon Using Zeolite-Based Catalyst I Gusti B. N. Makertihartha; Grandprix Thomryes Mart Kadja; Melia L. Gunawan; Rino R. Mukti; Subagjo Subagjo
Journal of Engineering and Technological Sciences Vol. 52 No. 4 (2020)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2020.52.4.9

Abstract

A series of four catalysts, i.e. ZSM-5 (Si/Al = 25) (Z1), a combination of ZSM-5 (Si/Al = 25) and zeolite Y (Si/Al = 25) (Z2), zeolite Y (Si/Al = 25) (Z3), and ZSM-5 (Si/Al = 80) (Z4), was successfully prepared for catalytic cracking of palm oil. All three catalysts utilized silica as a binder without other additional components. Catalytic cracking tests showed that the aromatic distribution was very high, according to the following order: Z4 (98%) > Z1 (90%) > Z2 (84%) > Z3 (60%). It was shown that ZSM-5 promotes the formation of aromatics better than zeolite Y does. From 98% of aromatics products in Z1, 71% were benzene, toluene, and xylene (BTX). It appears that the formation of aromatics needs milder acidity since a higher number of acids extends the cracking reaction, resulting in the formation of more gaseous and heavy aromatics products. The results of this study show potential for the sustainable production of bio-hydrocarbons with exceptional aromatic distributions, which may fulfill the demands of the petroleum, petrochemical, and fine chemical sectors.