Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Reaktor

Energy Harvesting from Sugarcane Bagasse Juice using Yeast Microbial Fuel Cell Technology Marcelinus Christwardana; Linda Aliffia Yoshi; J. Joelianingsih
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (636.167 KB) | DOI: 10.14710/reaktor.21.2.52-58

Abstract

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (????????????????????) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant
Studi Tekno Ekonomi Desalinasi Air Laut Skala Kecil Dengan Sistem Reverse Osmosis Linda Aliffia Yoshi; I Nyoman Widiasa
Reaktor Volume 16 No.4 Desember 2016
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (290.433 KB) | DOI: 10.14710/reaktor.16.4.218-224

Abstract

Penelitian ini bertujuan untuk mendapatkan desain dan keekonomian desalinasi air laut di Indonesia yang mempunyai suku bunga bank 12-14%, tarif listrik Rp 1.300-1.800 per kWh, dan pajak air bawah tanah. Penggunaan sistem desalinasi SWRO di Indonesia pada umumnya dibuat skala kecil. Studi ini berdasarkan studi kasus di Pulau Bali dengan tarif listrik adalah Rp 1.335,29/kWh dan pajak air bawah tanah adalah Rp 4.950/m3. Evaluasi tekno-ekonomi dianalisa untuk kapasitas 150-1000 m3/hari, recovery sistem 40% dengan salinitas air laut 32.000 ppm, suku bunga 13%, dan jangka waktu pinjaman 10 tahun. Harga jual air desalinasi pada tahun pertama 24,300/m3. Berdasarkan hasil evaluasi ekonomi yang meliputi NPV dan IRR  dapat disimpulkan bahwa investasi layak dilakukan.
Mathematical Modeling for Determination of Correlation Between Current Density and Dissolved Oxygen in Yeast Microbial Fuel Cell-Based Biosensor Marcelinus Christwardana; Linda Aliffia Yoshi
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.949 KB) | DOI: 10.14710/reaktor.20.3.117-121

Abstract

Experiments were conducted to study the correlation between current density and dissolved oxygen (DO) and to develop a model for estimating the value of current density in yeast MFC based DO biosensors. A curve between current density and DO was made, and data analysis was performed using free-online data fitting, namely zunzun.com. One linear regression and nine different exponential models are used as an approach to determine the correlation between current density and DO. The higher DO, the current density will increase rapidly. The most suitable model was chosen to describe the correlation between the current density and the DO. The coefficient of determination (R2), the sum of square absolute (SSQABS), and root mean square error (RMSE) are used to determine goodness or quality of fit. The exponential model shows a better fit to illustrate the correlation between current density and DO, with R2, SSQABS, and RMSE values were 0.9975, 0.4745 and 0.3444, respectively.
The Influence of Various Substrates on Power Generation in The Operation of Yeast Microbial Fuel Cells Christwardana, Marcelinus; Joelianingsih, J.; Yoshi, Linda Aliffia
Reaktor Volume 22 No.2 August 2022
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.22.2.36-41

Abstract

Several carbon substrates were tried, including glucose commercial, pro analysis glucose, commercial sugar, and yeast extract - peptone - d glucose (YPD) medium to improve the efficiency of the single chamber microbial fuel cell (MFC). The power production of various electron donors was investigated using baker yeast Saccharomyces cerevisiae. Voltage and power density generation were used to establish the pattern of substrate use. In addition, electrochemical analysis of the anodic biofilm was performed. S. cervisiae was shown to successfully consume YPD medium by anode respiration with a higher power density of 18.40±1.98 mW/m2, followed by pro analysis glucose (9.41±1.15 mW/m2), commercial glucose (1.30±0.10 mW/m2), and commercial sugar (0.04±0.01 mW/m2). Furthermore, a clear relationship was established between power density generating rate and voltage output. Voltages produced were 0.16±0.02 V, 0.13±0.03 V, 0.03±0.01 V, 0.01±0.00 V for YPD medium, pro analysis glucose, commercial glucose, and commercial sugar, respectively in MFC. The weight of biofilm indicated that yeast attachment was significantly more common in YPD medium than in other MFC-operated media. This study discovered that the substrate type in the anodic compartment regulates the formation of anodic biofilm.