Claim Missing Document
Check
Articles

Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production Widharyanti, Ika Dyah; Hendrawan, Muhammad Andiri; Christwardana, Marcelinus
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.32403

Abstract

The plant microbial fuel cell (PMFC) is a technology built to produce renewable and sustainable electricityin order to meet the increasing global demand. This study demonstrates the potential application of PMFC in swamps dominated by water hyacinth to produce biological energy and plant biomass.In this research, the plant was integrated into a microbial fuel cell that adopts various types of anode materials such as carbon felt, iron and zinc, with a varying distance of 10 and 20 cm between the anode and cathode. Organic compounds emerging from the photosynthesis process were deposited by plant roots, which were then oxidized by bacteria in the mud media. The result showed that the developed PMFC produced a voltage and current density of 244.8 mV and 185.4 mA/m2, respectively, for 30 days, with a maximum power of 100.2 mW/m2 in the cells using zinc as anode material with an electrode spacing of 10 cm. Furthermore, the pH value on PMFC with a longer electrode was higher than the shorter distance due to the protons' inability to move from anode to cathode against the force of gravity. In conclusion, PMFC which utilizes water hyacinth has a good performance in converting chemical energy from the substrate into electrical energy, and has the potential to be developed in underdeveloped areas.
Performance and Techno-Economic Analysis of Scaling-up A Single-Chamber Yeast Microbial Fuel Cell as Dissolved Oxygen Biosensor Christwardana, Marcelinus; Yoshi, Linda Aliffia
International Journal of Renewable Energy Development Vol 9, No 3 (2020): October 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2020.29980

Abstract

The Microbial fuel cells (MFCs) are electrochemical devices that can be utilized as biosensors, specifically Dissolved Oxygen (DO) biosensors. In this research, performance and techno-economic of MFC-based DO biosensors with two sizes, small and large, were evaluated and analysed to determine whether it is more economical to use a small or large reactor. MFC-based DO biosensors were also applied to an irrigation canal. When MFC immersed into distilled water with several variations of DO, the correlation between DO and current density produced equation with R2 values around 0.9989 and 0.9979 for SYMFC and LYMFC, respectively. The power density for SYMFC and LYMFC was 3.48 and 10.89 mW/m2, respectively, in DO 6. Higher power densities are correlated with the electrode surface area, especially the larger cathodic surface area. When applied to the irrigation canal, DO values measured using SYMFC and LYMFC have errors of around 3.39 and 4.42%, respectively, when compared to DO values measured using DO meters. LYMFC requires a capital cost of around $ 234.22 or 2.57 times higher than SYMFC, although it generates almost similar cost per mW/m2, $ 21.51 and $ 26.23 for LYMFC and SYMFC, respectively. The results concluded that yeast MFC -based DO biosensors with smaller sizes can achieve more economical compared to larger sizes.
Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater Christwardana, Marcelinus; Prabowo, Adrianus Kristyo; Tiarasukma, Agnes Priska; Ariyanti, Dessy
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.107-112

Abstract

Microbial fuel Cell (MFC) has gained a lot of attention in recent years due to its capability in simultaneously reducing organic component and generating electricity. Here multicultural rumen microbes (RM) were used to reduce organic component of slaughterhouse wastewater in a self-fabricated MFC. The objectives of this study were to determine the MFC configuration and to find out its maximum capability in organic degradation and electricity generation. The experiments were conducted by employing, different types of electrode materials, electrode size, and substrate-RM ratio. Configuration of MFC with graphite-copper electrode 31.4 cm2 in size, and substrate-RM ratio 1:10 shows the best result with current density of 318 mA m-2, potential  2.4 V, and achieve maximum power density up to 700 mW m-2. In addition, self-fabricated MFC also shows its ability in reducing organic component by measuring the chemical oxygen demand (COD) up to 67.9% followed by increasing pH from 5.9 to 7.5. MFC operating at ambient condition (29oC and pH 7.5), is emphasized as green-technology for slaughterhouse wastewater treatment. Article History: Received March 26, 2016; Received in revised form June 20, 2016; Accepted June 25, 2016; Available onlineHow to Cite This Article: Prabowo, A.K., Tiarasukma, A.P., Christwardana, M. and Ariyanti, D. (2016) Microbial Fuel Cells for Simultaneous Electricity Generation and Organic Degradation from Slaughterhouse Wastewater. Int. Journal of Renewable Energy Development, 5(2), 107-112.http://dx.doi.org/10.14710/ijred.5.2.107-112 
Quality of Macronutrient of Cow's Milk with Addition of Soybean Oil and Phycocyanin Extract as Functional Food Nefasa, Angela Nitia; Wulandari, Eudia Christina; Christwardana, Marcelinus; Hadiyanto, H.
Food Science and Technology Journal (Foodscitech) Vol 3 No 2 (2020)
Publisher : Universitas Dr Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.032 KB) | DOI: 10.25139/fst.v3i2.3139

Abstract

The purpose of this study was to determine the further effect of soybean oil and phycocyanin extract against the quality of macronutrient (fat, protein, lactose) and also Solid Non-Fat (SNF) in cow’s milk. Two different substances, i.e., soybean oil and different amount of phycocyanin extract was added into the milk. The result showed the increase of protein content gradually from 3.49 ± 0.230 to 3.88 ± 0.010 when phycocyanin was added. The inverse with the decreased fat content from the control sample, but after the addition of phycocyanin extract, it was increased gradually 6.15 ± 0.210 to 6.35 ± 0.21. SNF has increased from 10.61 ± 0.014 to 10.87 ± 0.007, while the decreasing level of lactose has been shown from 5.74  ± 0.021 to 5.62  ± 0.028 due to addition of phycocyanin. In conclusion,  the addition of phycocyanin extract can increase the protein and SNF content of milk. This phycocyanin extract also acts as an antioxidant agent so that it can reduce the oxidation process, which might be caused by the addition of soybean oil. Soybean oil might be used as a food additive to improve the fat content of milk but must be accompanied by an antioxidant agent to prevent the oxidation process.
Physical, Thermal Stability, and Mechanical Characteristics of New Bioplastic Elastomer from Blends Cassava and Tannia Starches as Green Material Christwardana, Marcelinus; Ismojo, I.; Marsudi, Sidik
Molekul Vol 16, No 1 (2021)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.696 KB) | DOI: 10.20884/1.jm.2021.16.1.671

Abstract

This paper presents the study results of the morphology, physical properties, thermal stability, and mechanics of bioplastic blends made from tannia and cassava starch, with a varying weight from 0 to 95%. The addition of tannia to the cassava starch-based bioplastic composition has the ability to reduce the number of pores, density, and water absorption with an average thickness of 0.21-0.29 mm. It also increased moisture content due to its nature, which is more hydrophilic than cassava starch. The result showed that the tensile strength of bioplastic ranged from 0.81-1.33 MPa and elongated from 31-35%. In addition, the thermal analysis data showed that the glass transition temperature shifted marginally due to intermolecular activity. This shows that tannia starch has promising potential as an alternative raw material for bioplastics to replace cassava starch which is more dominantly used as a food source.
Quality of Macronutrient of Cow's Milk with Addition of Soybean Oil and Phycocyanin Extract as Functional Food Nefasa, Angela Nitia; Wulandari, Eudia Christina; Christwardana, Marcelinus; Hadiyanto, H.
Food Science and Technology Journal (Foodscitech) Vol 3 No 2 (2020)
Publisher : Universitas Dr Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.032 KB) | DOI: 10.25139/fst.v3i2.3139

Abstract

The purpose of this study was to determine the further effect of soybean oil and phycocyanin extract against the quality of macronutrient (fat, protein, lactose) and also Solid Non-Fat (SNF) in cow’s milk. Two different substances, i.e., soybean oil and different amount of phycocyanin extract was added into the milk. The result showed the increase of protein content gradually from 3.49 ± 0.230 to 3.88 ± 0.010 when phycocyanin was added. The inverse with the decreased fat content from the control sample, but after the addition of phycocyanin extract, it was increased gradually 6.15 ± 0.210 to 6.35 ± 0.21. SNF has increased from 10.61 ± 0.014 to 10.87 ± 0.007, while the decreasing level of lactose has been shown from 5.74  ± 0.021 to 5.62  ± 0.028 due to addition of phycocyanin. In conclusion,  the addition of phycocyanin extract can increase the protein and SNF content of milk. This phycocyanin extract also acts as an antioxidant agent so that it can reduce the oxidation process, which might be caused by the addition of soybean oil. Soybean oil might be used as a food additive to improve the fat content of milk but must be accompanied by an antioxidant agent to prevent the oxidation process.
Quality of Macronutrient of Cow's Milk with Addition of Soybean Oil and Phycocyanin Extract as Functional Food Nefasa, Angela Nitia; Wulandari, Eudia Christina; Christwardana, Marcelinus; Hadiyanto, H.
Food Science and Technology Journal (Foodscitech) Vol. 3 No. 2 (2020)
Publisher : Universitas Dr Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.032 KB) | DOI: 10.25139/fst.v3i2.3139

Abstract

The purpose of this study was to determine the further effect of soybean oil and phycocyanin extract against the quality of macronutrient (fat, protein, lactose) and also Solid Non-Fat (SNF) in cow’s milk. Two different substances, i.e., soybean oil and different amount of phycocyanin extract was added into the milk. The result showed the increase of protein content gradually from 3.49 ± 0.230 to 3.88 ± 0.010 when phycocyanin was added. The inverse with the decreased fat content from the control sample, but after the addition of phycocyanin extract, it was increased gradually 6.15 ± 0.210 to 6.35 ± 0.21. SNF has increased from 10.61 ± 0.014 to 10.87 ± 0.007, while the decreasing level of lactose has been shown from 5.74  ± 0.021 to 5.62  ± 0.028 due to addition of phycocyanin. In conclusion,  the addition of phycocyanin extract can increase the protein and SNF content of milk. This phycocyanin extract also acts as an antioxidant agent so that it can reduce the oxidation process, which might be caused by the addition of soybean oil. Soybean oil might be used as a food additive to improve the fat content of milk but must be accompanied by an antioxidant agent to prevent the oxidation process.
Outstanding Photo-bioelectrochemical Cell by Integrating TiO2 and Chlorophyll as Photo-bioanode for Sustainable Energy Generation Christwardana, Marcelinus; Septevani, Athanasia Amanda; Yoshi, Linda Aliffia
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41722

Abstract

Photosynthesis is a technique for converting light energy into chemical energy that is both efficient and sustainable. Chlorophyll in energy-transducing photosynthetic organisms is unique because of their distinctive structure and composition. In photo-bioelectrochemical research, the chlorophyll's quantum trapping efficiency is attractive. Chlorophyll from Spirulina platensis is demonstrated to communicate directly with TiO2-modified Indium Thin Oxide (ITO) to generate electricity without the use of any mediator. TiO2-modified ITO with a chlorophyll concentration of 100 % generated the greatest power density and photocurrent of approximately 178.15 mW/m2 and 596.92 mA/m2 from water oxidation under light among all the other materials. While the sensitivity with light was 0.885 mA/m2.lux, and Jmax value was 1085 mA/m2. Furthermore, the power and photocurrent density as a function of chlorophyll content are studied. The polarizability and Van der Waals interaction of TiO2 and chlorophyll are crucial in enhancing electron transport in photo-bioelectrochemical systems. As a result, this anode structure has the potential to be improved and used to generate even more energy.
Optimization of Cellulase Production by Aspergillus niger ITBCC L74 with Bagasse as Substrate using Response Surface Methodology Abdullah Abdullah; Hamid Hamid; Marcelinus Christwardana; H. Hadiyanto
HAYATI Journal of Biosciences Vol. 25 No. 3 (2018): July 2018
Publisher : Bogor Agricultural University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (742.776 KB) | DOI: 10.4308/hjb.25.3.115

Abstract

Cellulase is a very important enzyme for lignocelluloses based ethanol production. Bagasse contains mainly cellulose (57.76%), hemicellulose (12.44%), lignin (21.34%), and others (7.96%). Lignocellulosic material has been considered as the good option for cellulase production because it is cheap and already available in a huge amount. The objective of this research was to produce cellulase enzyme and to optimize it by using response surface methodology. The bagasse with water content of 80% was incubated with 2 ml inoculum of Aspergillus niger ITBCC L74 in a 250 ml Erlenmeyer flask. After reaching the specified time the enzyme was extracted and then determined for its activity. Effect of process parameters such as pH, urea and MgCl2 addition were studied. The optimal cellulase activity was achieved at urea concentration of 4.5% (w/w), MgCl2 concentration of 1 mM and pH of 3.5, with maximum enzyme activity was 0.630 U/gr.
Energy Harvesting from Sugarcane Bagasse Juice using Yeast Microbial Fuel Cell Technology Marcelinus Christwardana; Linda Aliffia Yoshi; J. Joelianingsih
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (636.167 KB) | DOI: 10.14710/reaktor.21.2.52-58

Abstract

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (????????????????????) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant
Co-Authors . Widayat A Abdullah Adrianus Kristyo Prabowo Adrianus Kristyo Prabowo, Adrianus Kristyo Agam Duma Kalista Wibowo Agnes Priska Tiarasukma Agnes Priska Tiarasukma Agus Afif Andin Vita Amalia, Andin Vita Andri Cahyo Kumoro Angela Nitia Nefasa Angela Nitia Nefasa Angela Nitia Nefasa Aniek Sri Handayani Athanasia Amanda Septevani, Athanasia Amanda Berkah Fajar Tamtomo kiono Boy Frando Sijabat Danny Soetrisnanto Deni Shidqi Khaerudini Dessy Ariyanti Dessy Ariyanti Didik Setiyo Widodo E. Enjarlis Ega Zahrotun Nisa Eudia Christina Wulandari Fadhilla, Putri Fania, Adhista Fatkur Rohman Fitra Pradhita Fitria Yuli Anggita Sari Gunawan Gunawan H Hadiyanto H. Hadiyanto H. Hadiyanto H. Hadiyanto H. Hadiyanto H. Hargono Hamid Hamid Hantoro Satriadi Haris, Amnan Hendrawan, Muhammad Andiri Heriyanti, Andhina Putri Heru Cahyana Huda, Muhammad Badrul I Made Aditya Suryajaya Ifa Miftahushudury Ismiyarto Ismitarto Ismojo, I. Joelianingsih . Linda Aliffia Yoshi, Linda Aliffia Linda Suyati Lisa Aditya Margaretha Praba Aulia Maulana, Achmad Yanuar Muhamad Zaini Mahdi Ngadiwiyana M.Si. S.Si. Nur Rokhati Ode Resa Fatlan Pina Tiani Purbowatiningrum Ria Sarjono Putra, Alam Eka Ratnawati Ratnawati Retno Ariadi Lusiana Rifa’atunnisa, Rifa’atunnisa Riky Yonas Rinaryadi, Kemilau Permata Hati Rizkan, Muhammad Rizki Nor Amelia S. Slamet Satrio Kuntolaksono Sidik Marsudi Singgih Hartanto Sri Widodo Agung Suedy Sudirman Sudirma Syachrir, Guntur Tony Suryo Utomo Tri Retnaningsih Soeprobowati Udi Harmoko Udi Harmoko Uray Irzandi Wahyu Zuli Pratiwi Widharyanti, Ika Dyah Yasinta Nikita Titisari Yuli Amalia Husnil Zakaria Hussein Abdurrahman