Claim Missing Document
Check
Articles

Found 5 Documents
Search

Mekanisme Gempa Vulkanik Gunung Talang Pasca Gempa Tektonik Mentawai Tahun 2007-2009, Sumatra Barat Kriswati, Estu; Pamitro, Y. E.; Basuki, A.
Indonesian Journal on Geoscience Vol 5, No 3 (2010)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (856.494 KB) | DOI: 10.17014/ijog.v5i3.104

Abstract

DOI: 10.17014/ijog.v5i3.104The Mentawai tectonic earthquake (magnitude 6.8 on the Richter Scale) on April 10, 2005 is assumed to trigger Talang volcanic activity that caused an eruption on April 12, 2005. Information on the source mechanism of volcanic earthquakes after the tectonic earthquake is expected to answer question of “Do tectonic earthquakes around the Talang Volcano trigger its volcanic activities?” Epicenter distribution of the volcanic earthquakes between 2007 and 2009 shows a southeast – northwest pattern with dextral strike-slip fault and normal fault mechanisms. The data show that earthquake activities at the Talang Volcano were dominated by local structure movements influenced by regional tectonic movements. Between 2007 and 2009, there were three process stages related to magnitude 6 or larger tectonic earthquakes around the Talang Volcano. First stage was a period before August 16, 2009. In this stage, volcanic fluids rose to the shallower chamber beneath the Talang Volcano. Second stage was a compressional stage and formation of a reverse fault influenced by Mentawai tectonic earthquake on August 16, 2009 and activation of a fault that intersects the Volcano. The third stage was a compresional stage and formation of a reverse fault influenced by Padang tectonic earthquake on September 30, 2009. In this stage, area fracturing was intensified, thereby the fracturing became more intensive. As the result, the accumulated volume and pressure of several tectonic earthquakes were released that caused an increase of eruption column soon after the tectonic earthquake.
Characteristic of Lokon Volcano Deformation of 2009 - 2011 Based on GPS Data Suhartaman, Suhartaman; Suparman, Y.; Abidin, H. Z.; Sinaga, Tumpal; Kriswati, Estu; Meilano, I.
Indonesian Journal on Geoscience Vol 7, No 4 (2012)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2717.865 KB) | DOI: 10.17014/ijog.v7i4.147

Abstract

DOI: 10.17014/ijog.v7i4.147Precursor of Lokon Volcano eruptions in 2011 is believed to begin since December 2007 which was marked by increasing number of volcanic earthquakes and gas emission. To support this information, deformation method is used primarily to determine deformation characteristics of Lokon volcanic activity in the period of 2009-2011. The period of analysis is adapted to the presence of GPS data. Displacement rate of Lokon GPS observation points in the period of 2009 - 2011 ranged from 1.1 to 7 cm a year. Strain patterns that occur in the areas are compression surrounding Tompaluan crater and extension in the eastern slope. Location of the pressure source for August 2009 - March 2011 measurement was at a depth of 1800 m beneath Tompaluan crater. Deformation in the Lokon Volcano is characteristized by the compression zone in the summit and crater area caused by magma activity raised into the surface from a shallow magma source which is accompanied by a high release of volcanic gases. Accumulated pressure release and deformation rate as measured in the Lokon Volcano remain low.
Pengaruh Gempabumi Tektonik Terhadap Aktivitas G. Gede Hidayati, Sri; Sulaeman, Cecep; Supartoyo, Supartoyo; Kriswati, Estu
Jurnal Geologi dan Sumberdaya Mineral Vol 19, No 4 (2018): Jurnal Geologi dan Sumberdaya Mineral
Publisher : Pusat Survei Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (320.618 KB)

Abstract

In addition to home for seven active volcanoes, West Java, is also having high tectonic activity, owing to its close distance from subduction zone and crustal fault. The Cimandiri Fault extends about 100 km from southwest to the northeast ward through Sukabumi area. Gede Volcano with high seismic activity is sitting 20 km north of Cimandiri Fault. Shallow earthquakes often occur around Gede volcano and their sources are fairly close to the Cimandiri valley. Feltearthquakes occurred in 2007, 2010, 2012 and 2014,where the source supposed to be around Cimandiri valley,were followed by volcano-tectonic (VT) earthquake swarms in Gede Volcano. These swarms probably indicate that there is a linkage between tectonic and Gede volcano activities. However, the swarms were followed by less significant changes in volcanic activity. GPS data during measurement period of 2006-2015 show the existence of a fault with main stress in the northwest-southeast direction. The mechanism of the Cimandiri Fault is reverse fault with sinistral slip component and sinistral strike slip fault, while the swarm of VT earthquakes in Gede Volcano is dominated by reverse and normal faults. Tectonic earthquakes may trigger nearby volcanic eruption; it depends on the state of magma of the volcano and the magnitude of the earthquake.Keyword: Tectonic, Cimandiri fault, VT earthquake, Gede Volcano.
Numerical Simulation of Pyroclastic Flow of Karangetang Volcano Based on 2015 Eruption Activity Banggur, Willi FS; Patria, Cahya; Kriswati, Estu; Abdurrachman, Mirzam; Suantika, Gede; Syahbana, Devy Kamil; Korompis, Richard; Adriansyah, David; Gurasali, Aditya; Wenas, Alfred; Praja, Kurnia; Sentosa, Imam; Kusnadi, Iing; Shimomura, Makoto
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 1 (2024): JGEET Vol 09 No 01 : March (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.1.14217

Abstract

On May 7-9, 2015 the eruptive activity of Mount Karangetang released pyroclastic flows towards the Batuawang River for 3.6 km and hit Kora kora village which is located south of the Main Crater. This pyroclastic flow originated from lava flows during the effusive eruption period. MODIS satellite image hotspot data shows the lava flow extrusion rate and total volume at the peak began to increase since April 2015 and continued to show an increase until December 2015, with the estimated volume and lava extrusion rate on  April 22, 2015 reaching 4.16x106 m3 and 0.53 m3/s, respectively, and on December 9, 2015 the volume reached 1.67x107 m3 with a lava extrusion rate of 1.97 m3/s. The results of field checks show that this pyroclastic flow is dominated by block and ash, and by using numerical simulations show the deflection of pyroclastic flow in accordance with the flow field of the Batuawang river, and the splash of pyroclastic flow towards Kora kora village in addition to the location adjacent to the river flow and also controlled by the narrowing of the river channel due to the accumulation of material in the flow field. A total of 8 numerical simulation cases have been carried out, and in our opinion with an input volume of 500 x103 m3 and a flow material friction of 0.5 is a case that corresponds to a flow event that reaches a distance of 3.6 km from the Main Crater.  Taking into account the current activity conditions we used the same parameters to estimate the area that could be affected by pyroclastic flows in the future. Numerical simulation show that the pyroclastic flow traveled 5 km in a south-southwest direction from the top of the main crater.
Volcanoes Segmentation at the Western Sunda Arc based on Satellite-derived Geological Lineaments and Land Surface Temperatures Rahmanto, Ridwan; Saepuloh, Asep; Kriswati, Estu; Purnamasari, Heruningtyas Desi
Journal of Engineering and Technological Sciences Vol. 57 No. 3 (2025): Vol. 57 No. 3 (2025): June
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.3.4

Abstract

The Western Sunda Arc is an active tectonic zone formed by the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The tectonic zone hosted for 83 active volcanoes, including Mts. Sinabung, Krakatau, Tangkuban Parahu, Merapi, and Semeru. The dense volcano concentration and high volcanic activity cause complexity in monitoring and observation processes. Segmenting volcanoes by location and tectonic setting is necessary to simplify the disaster monitoring and enhance mitigation efforts through focused observation areas. This study focuses on the segmentation of the volcanoes distributed at the Sunda Arc in Indonesia by analyzing the satellite-derived geological lineaments and land surface temperatures. The Sunda Arc is a complex volcanic chain that spans through Sumatra and Java Islands and lies in an active tectonic region. Remote sensing data and advanced geospatial techniques were used to examine geological lineament patterns and surface temperatures along the volcanic arc and the results were validated through fieldwork. Moreover, Shuttle Radar Topography Mission (SRTM) and Landsat 8 OLI/TIRS imagery were applied to achieve accurate lineament extraction and surface temperature anomaly detection. Lineament density was also computed through the modified Segment Tracing Algorithm (mSTA) to identify the fault zones and structural discontinuities in order to ensure better regional geological understanding. Subsequently, land surface temperature analysis was used to classify thermal anomalies and this led to the differentiation of natural volcanic sources from ground surfaces. These parameters were integrated to segment the volcanoes of the Sunda Arc into nine zones. Each zone was presented by average lineament density from 207.83 km/km2 to 166.06 km/km2, land surface temperature from 23.36 °C to 28.65 °C, angle of subduction slab from 22.871° to 38.007°, and lineament strikes from N 330° E to N 260° E. The zones were later discussed relative to the gradient of the Sunda Arc subduction slab as a form of contribution to the existing knowledge on geothermal dynamics, tectonic processes, and volcanic hazards beyond the region.