Claim Missing Document
Check
Articles

PEMBUATAN DAN ANALISA SIFAT MEKANIK KOMPOSIT DENGAN PENGUAT ABU ( FLY ASH ) CANGKANG SAWIT UNTUK BAHAN KAMPAS REM SEPEDA MOTOR Berto P. Simanjorang; Syahrul Abda; Ikhwansyah Isranuri; Bustami Syam; M. Sabri
DINAMIS Vol. 5 No. 1 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1229.735 KB) | DOI: 10.32734/dinamis.v5i1.7041

Abstract

Kampas rem sepeda motor merupakan salah satu elemen yang penting pada sepeda motor, dimana kampas rem ini sangat mempengaruhi sistem pengereman pada sepeda motor. Bahan komposit menjadi bahan alternatif dari limbah sawit yaitu abu cangkang sawit (fly ash). Pembuatan komposit bahan kampas rem ini dengan menggunakan metoda hand lay out yang terdiri dari abu cangkang sawit sebagai penguat (filler), di campur dengan resin BQTN-157 berfungsi sebagai matriks dan juga katalis Methyl Ethyl Ketone Peroksida berfungsi mempercepat proses pengerasan. Metode eksperimen di lakukan dengan pengujian mekanik yaitu, uji kekerasan, kelenturan dan keausan. Hasil uji kekerasan spesimen D1-4 komposisi 40% resin, 60% fly ash memiliki tingkat kekerasan yang tertinggi dengan nilai 138 HV. Hasil uji lentur spesimen C1-3 dengan komposisi 50% resin, 50% fly ash tegangan yang terbaik yaitu 65,37 N/mm2. Laju keausan terbaik spesimen D1-4, yaitu 0,89x10-5 gram/mm.detik, dengan komposisi 40% resin, 60% fly ash. Kesimpulan nya hasil pengujian kekerasan dengan laju keausan sepadan, dimana spesimen yang paling keras, laju keausannya paling rendah.
PEMBUATAN BADAN PESAWAT DARI BAHAN KOMPOSIT POLIMER BERONGGA YANG DIPERKUAT SERAT BATANG KELAPA SAWIT DENGAN METODE PENGECORAN GRAVITASI Adi S. Taniwan; Ikhwansyah Isranuri; Farida Ariani; Tugiman; A. Husein Siregar
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1188.223 KB) | DOI: 10.32734/dinamis.v5i2.7045

Abstract

Pemanfaatan kelapa sawit seperti BKS untuk menjadi komoditi baru sangat diperlukan. Salah satunya ialah dengan membuat material komposit yang menggunakan penguat serat batang kelapa sawit. BKS diolah untuk dijadikan serat dan dicampur dengan resin termoset untuk selanjutnya dibuat bahan polimer berongga. Kemudian bahan tersebut digunakan sebagai bahan pembuatan body pesawat. Tujuan penelitian ini adalah untuk mengetahui formulasi campuran yang baik dalam pembuatan body pesawat tanpa awak dengan bahan komposit polimer berongga yang diperkuat serat batang kelapa sawit, mengetahui proses pembuatan cetakan body pesawat, dan mengetahui proses pembuatan body pesawat dengan bahan komposit polimer berongga yang diperkuat serat batang kelapa sawit. Pesawat tanpa awak dibuat dengan menggunakan metode penuangan grafitasi. Dari hasil penelitian diperoleh komposisi yang baik dalam membuat badan pesawat tanpa awak adalah 75% resin, 20% blowing agent, dan 5% serat. Dalam pembuatan cetakan sayap diperlukan 1 lapis serat kaca sedangkan pada body pesawat diperlukan 3 lapis serat kaca. Waktu yang diperlukan agar campurannya dapat mengembang sepenuhnya ialah 8 menit.
PENGARUH VARIASI POLYURETHANE TERHADAP SIFAT MEKANIK MATERIAL KOMPOSIT POLIMER BERONGGA (POLYMERIC COMPOSITE FOAM) YANG AKAN DIGUNAKAN PADA PESAWAT UAV Andri Setiawan; Ikhwansyah Isranuri; Tugiman; Alfian Hamsi; Suprianto
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1042.391 KB) | DOI: 10.32734/dinamis.v5i2.7046

Abstract

Komposit adalah suatu material yang terdiri dari campuran atau kombinasi dua atau lebih material baik secara mikro atau makro, dimana sifat material yang tersebut berbeda bentuk dan komposisi kimia dari zat asalnya. Material komposit adalah material yang terbuat dari dua bahan atau lebih yang tetap terpisah dan berbeda dalam level makroskopik selagi membentuk komponen tunggal. Tujuan penelitian ini adalah mendapatkan karakteristik mekanik komposit polymeric foam diperkuat serat Batang Kelapa Sawit yang digunakan pada badan pesawat. Dalam penelitian ini menggunakan uji tarik dan uji tekan untuk mendapatkan nilai tegangan, regangan dan modulus elastisitas. Material komposit didefinisikan sebagai material yang terbuat dari dua bahan atau lebih yang tetap terpisah dan berbeda. Serat yang di pakai pada penelitian ini adalah serat Batang Kelapa Sawit yang bermanfaat memliki sifat lembut dan struktur yang berpori sehingga dapat menyerap energi suara. Nilai Tegangan rata-rata dari hasil pengujian tarik adalah 6,1784 MPa dan hasil pengujian tekan adalah 13,18619473MPa. Nilai Regangan rata-rata dari hasil pengujian tarik adalah 0,014216 mm/mm dan hasil pengujian tekan adalah 0,241212618 mm/mm. Nilai Modulus Elastisitas rata-rata dari hasil pengujian tarik adalah 450,52476567221 MPa dan hasil pengujian tekan adalah 54,6442656 MPa.
PENGARUH VARIASI POLYURETHANE TERHADAP SIFAT FISIS DAN KOEFISIEN SERAP BUNYI PADA MATERIAL KOMPOSIT POLYMERIC FOAM UNTUK PEMBUATAN BADAN PESAWAT UAV Frans Dinata; Ikhwansyah Isranuri; Farida Ariani; A. Husein Siregar; Marragi M.
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1089.878 KB) | DOI: 10.32734/dinamis.v5i2.7047

Abstract

Material akustik adalah material teknik yang fungsi utamanya adalah untuk menyerap suara. Material akustik adalah suatu bahan yang dapat menyerap energi suara, namun besarnya energi yang diserap berbeda-beda untuk tiap bahan. Tujuan umum dalam penelitian ini adalah menganalisa sifat fisis dan koefisien serap bunyi material komposit polymeric foam yang diperkuat serat batang kelapa sawit yang dipakai untuk badan pesawat. Dalam penelitian ini digunakan tabung impedansi guna mengukur koefsien serap bunyi material polymeric foam dengan variasi ketebalan 5, 10, dan 15mm. Dari penelitian ini didapat bahwa variabel II memiliki sifat fisis dan sifat mekanik yang baik dengan massa 1,6367g, volume 3,03ml, dan massa jenis 539,56 kg/m3. Dan untuk pengujian daya serap bunyi digunakan spesimen dengan variabel II. Frekuensi yang paling baik diserap oleh material komposit yaitu pada frekuensi menengah. Untuk ketebalan 5mm nilai koefisien absorpsi paling tinggi sebesar 0,5557 yaitu pada frekuensi 1500Hz, sedangkan pada ketebalan 10mm nilai koefisien absorpsi paling tinggi sebesar 0,5060 pada frekuensi 1000Hz, dan pada ketebalan 15mm nilai koefisien absorpsi paling tinggi sebesar 0,5109 pada frekuensi 500Hz.
ANALISIS KOMPUTASI TEGANGAN AKIBAT UJI JATUH BEBAS DENGAN KETINGGIAN 3 METER PADA KOMPOSIT YANG DIGUNAKAN SEBAGAI PELINDUNG DADA PENGENDARA SEPEDA MOTOR Gunawan H; M. Sabri; Ikhwansyah Isranuri; Pramio G. Sembiring; A. Husein Siregar
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1163.945 KB) | DOI: 10.32734/dinamis.v5i2.7050

Abstract

The goal of this research is to identify computationally the stress and force that occur in the motor bike body protector which created using composite material. This test is done using ANSYS software. Test is using explicit dynamic with the free-fall impact methods which make the speciment crashed to the anvil. From the test the impact force transmitted is 14.95 kN and with the stress 0.014952 Mpa. Average impact force that occur is 29.18 Mpa which is compared with the EN 1621-3 standarization limit which is 35 kN in order to determine if this body protector is consentient with the standard.
STUDI EKSPERIMENTAL DETEKSI FENOMENA KAVITASI PADA POMPA DISTILASI DENGAN MENGGUNAKAN SINYAL SPEKTRUM GETARAN Bayu Syahputra; Ikhwansyah Isranuri; Syahrul Abda; Tugiman; Alfian Hamsi
DINAMIS Vol. 5 No. 3 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1471.83 KB) | DOI: 10.32734/dinamis.v5i3.7061

Abstract

Kavitasi merupakan fenomena perubahan phase uap zat cair pada fluida yang mengalir. Perubahan tersebut dapat diakibatkan turunnya tekanan maupun naiknya temperatur fluida, turbulensi dan pulsasi pada pipa isap. Indikasi kavitasi adalah timbulnya gelembung-gelembung uap, getaran dan suara bising. Dampak kavitasi pada pompa adalah turunnya unjuk kerja (performance) dan kerusakan komponen pompa. Pada penelitian ini divariasikan perubahan kapasitas untuk mengamati sirkulasi balik didalam system (Internal re-circulation) yang merupakan penyebab terjadinya kavitasi. Untuk mengetahui terjadinya kavitasi parameter yang digunakan dengan mengukur perilaku getaran pompa. Pengukuran dilakukan dengan menggunakan accelerometer DI-440 SKF dengan arah pengukuran aksial, vertikal dan horizontal pada frequensi domain dan time domain. Hasil penelitian ini menujukan sinyal spektrum getaran pada pompa semakin besar pada kapasitas terendah (70%) dan kapasitas tertinggi (100%) ditandai dengan semakin besarnya amplitudo. Karakteristik spektrum getaran fenomena kavitasi berada di rentang frekuensi 100.000 CPM-200.000 CPM, serta rekomdasi kapasitas pengoperasian pompa mulai rentang 0,00205 m3/s -0,002500 m3/s.
SIMULASI UJI FATIK PADA MATERIAL PADUAN ALUMINIUM DAN MAGNESIUM DENGAN VARIASI PEMBEBANAN Apriyan A. Saputra; Ikhwansyah Isranuri; Bustami Syam; Marragi M.; M. Sabri
DINAMIS Vol. 5 No. 3 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1334.495 KB) | DOI: 10.32734/dinamis.v5i3.7068

Abstract

Objek pengujian adalah paduan aluminium dan magnesium. Variasi persentase bahan adalah 96% aluminium dan 4% magnesium. Untuk mengetahui galat atau error perbandingan hasil uji sebenarnya dengan hasil uji simulasi. Pada proses simulasi pengujian fatik, dilakukan 3 variasi berat beban uji. Pada berat 11,94 kg menghasilkan tegangan 59,70 MPa, Pada berat 7,62 menghasilkan tegangan 53,74 MPa, Pada berat 5,97 menghasilkan tegangan 45,52 MPa. Dilakukan juga simulasi uji fatik dengan menggunakan program ansys 14.5 dan di ketahui : Pada beban 117,13 N didapatkan umur kelelahan minimum 47120 cycles, faktor keamanan 1,2949 cycles, tegangan alternating stress maksimum 8,945 MPa, Pada beban 74,7522 N didapatkan umur kelelahan minimum 82565 cycles, faktor keamanan 1,7128 cycles, tegangan alternating stress maksimum 2,074 MPa, Pada beban 58,5657 N didapatkan umur kelelahan minimum 135515 cycles, faktor keamanan 2,1106 cycles, tegangan alternating stress maksimum 0,00114 MPa.
STUDI EKSPERIMENTAL KARAKTERISTIK KEBISINGAN KNALPOT MESIN DLE GAS ENGINE-30 SEBAGAI PENGGERAK PESAWAT TANPA AWAK PROTOTIPE NVC USU Irwan Rosyadi Nst; Ikhwansyah Isranuri; M. Sabri; Tugiman; Farida Ariani; Marragi M.
DINAMIS Vol. 6 No. 1 (2018): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1264.156 KB) | DOI: 10.32734/dinamis.v6i1.7093

Abstract

Pesawat model adalah pesawat udara tak berawak dengan batasan-batasan tertentu yang meliputi batasan ukuran pesawat, batasan mesin dan batasan bentuk. Pesawat tak berawak berfungsi untuk keperluan pemetaan, pengintaian atau untuk misi ke luar angkasa misalnya oleh militer atau badan luar angkasa disebut UAV (Unmanned Air Vehicle). Permasalahan kebisingan pada pesawat tanpa awak sedang menjadi konsentrasi penelitian yang terus meningkat dari tahun ke tahun. Sebagian besar kebisingan pada pesawat berasal dari sistem propeler pengangkat, rotor, dan mesin. Kebisingan dari sebuah propeler adalah kombinasi dari 2 (dua) sumber kebisingan, yaitu dari propeller sendiri, dan dari sumber tenaga (mesin). Penelitian ini bertujuan untuk melakukan kajian eksperimental karakteristik dan menganalisa noise pada sebuah mesin pesawat tanpa awak yang menggunakan mesin DLE GAS ENGINE -30. Pengukuran dilakukan dengan variasi putaran 2000rpm, 3000rpm, 4000rpm, 5000rpm, 6000rpm, dan 7000rpm dengan metode bola (spherical method) . Dari analisa kebisingan yang dihasilkan dari mesin DLE GAS ENGINE -30 nilai kebisingan terbesar dari analisa kebisingan terdapat pada arah vertikal (Z+) di putaran 7000rpm dengan nilai 106.6 dB dan tekanannya 5,508Pa.
PERILAKU MEKANIS DAN ANALISA TITIK BERAT STRUKTUR BADAN PESAWAT TANPA AWAK YANG DIBUAT DARI PADUAN ALUMINIUM-MAGNESIUM (96%-4%) Muhammad I. Tawakal; Ikhwansyah Isranuri; M. Sabri; Bustami Syam; Syahrul Abda; Marragi M.; Tugiman
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1454.907 KB) | DOI: 10.32734/dinamis.v4i3.7096

Abstract

Inovasi teknologi yang didapat adalah sebuah pesawat tanpa awak dengan material ringan, material yang dipilih adalah Aluminium (Al). Aluminium yang dipadukan dengan magnesium (Mg), memiliki karekteristik meredam getaran yang baik, ketahanan korosi yang baik, dan massa jenis yang ringan. Berdasarkan Review dari riset sebelumnya diperoleh data sebagai berikut; Impak ; 0,084 ????/????????2 , ???????????????????????? ; 7,05 Nm, Modulus elastisitas ; 197,9 MPa (Ifantri, 2011) perbandingan Al-Mg yang ideal untuk digunakan sebagai material badan pesawat tanpa awak adalah 96%-4%. Tujuan dari penelitian ini adalah (1)Mengetahui tahapan proses pengecoran Al-Mg (96%-4%) (2)Melakukan pengujian uji tarik (tensile strength) untuk mendapatkan nilai modulus elastisitas dari paduan Aluminium-Magnesium (3)Mengetahui mikrostruktur dari paduan Aluminium-Magnesium (4)Menentukan titik berat pada badan pesawat tanpa awak menggunakan Software SolidWorks 2013. Desain pesawat tanpa awak yang akan dibuat akan memperbaharui desain sebelumnya, konsentrasi terletak pada pembuatan fuselage menentukan center of gravity. Pengujian dilakukan dengan membuat 6 spesimen untuk dua pengujian. Pengujian kekuatan tarik dilakukan dengan menggunakan Servopulse tensile tester dan untuk foto mikro menggunakan Reflected Metallurgical Microscope. Dari analisa data, maka diperoleh hasil pengujian tarik; ԑ????????????????−???????????????? : 3,383 %, ????????????????????−???????????????? : 43712 MPa. Hasil mikrostruktur memperlihatkan tingkat porositas yang rendah dengan 200x pembesaran.
SIMULASI PEMBEBANAN IMPAK PADA HELMET SEPEDA MATERIAL KOMPOSIT BUSA POLIMER DIPERKUAT SERAT TANDAN KOSONG KELAPA SAWIT Pradipta S. S.; Bustami Syam; M. Sabri; Tugiman; Ikhwansyah Isranuri; Syahrul Abda; Mahadi
DINAMIS Vol. 4 No. 3 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1330.17 KB) | DOI: 10.32734/dinamis.v4i3.7098

Abstract

Helmet adalah alat yang digunakan sebagai pengaman bagian vital manusia yaitu kepala dari benturan yang berbahaya. Desain helmet sepeda berbeda dari helmet sepeda motor karena kecepatan sepeda hanya sekitar 15 km/jam. Pada umumnya beban impak yang dialami pada helmet sepeda terjadi pada sisi samping dan belakang. Untuk mengetahui distribusi tegangan dan regangan perlu dilakukan simulasi dan verifikasi simulasi pengujian impak jatuh bebas dilakukan dengan eksperimental uji impak jatuh bebas. Penelitian ini melakukan simulasi pembebanan impak pada helmet sepeda. Helmet dimodel dengan menggunakan Solidwork 2013 dan disimulasi menggunakan software ANSYS 14.0 Workbench yang berbasis Finite Element Method (FEM) untuk dibandingkan dengan helmet yang diuji secara eksperimental. Pada penelitian ini, berhasil ditemukan bahwa dari hasil simulasi uji impak jatuh bebas sisi samping helmet pada ketinggian 1 m dan kecepatan 4429 mm/s diperoleh tegangan maksimum 1,405 Mpa dan tegangan pada sisi samping adalah 0,938 MPa, untuk sisi belakang dengan tinggi dan waktu yang sama diperoleh tegangan maksimum 0,905 Mpa sementara tegangan pada sisi belakang helmet adalag 0,603 MPa. Regangan maksimum yang diperoleh pada simulasi uji impak jatuh bebas sisi samping helmet adalah 0,04, untuk sisi belakang helmet diperoleh regangan maksimum 0,043. Dari pengujian impak jatuh bebas diperoleh tegangan sisi samping 1,029 MPa, dan untuk sisi belakang diperoleh 0,683 MPa. Dengan membandingkan tegangan hasil simulasi dan hasil eksperimental uji impak jatuh bebas sisi samping selisih 0,091 MPa atau 9,73%, sedangkan untuk sisi belakang diperoleh selisih 0,08 MPa atau 13,26%.