Claim Missing Document
Check
Articles

Found 3 Documents
Search

Performance Analysis of Specification Computer and Mobile with Implementation Tawaf Virtual Reality using A* Algorithm and RVO System Moh. Zikky; M. Jainal Arifin; Kholid Fathoni; Agus Zainal Arifin
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.902 KB) | DOI: 10.24003/emitter.v7i1.321

Abstract

High-Performance Computer (HPC) is computer systems that are built to be able to solve computational loads. HPC can provide a high-performance technology and short the computing processes timing. This technology was often used in large-scale industries and several activities that require high-level computing, such as rendering virtual reality technology. In this research, we provide Tawaf’s Virtual Reality with 1000 of Pilgrims and realistic surroundings of Masjidil-Haram as the interactive and immersive simulation technology by imitating them with 3D models. Thus, the main purpose of this study is to calculate and to understand the processing time of its Virtual Reality with the implementation of tawaf activities using various platforms; such as computer and Android smartphone. The results showed that the outer-line or outer rotation of Kaa’bah mostly consumes minimum times although he must pass the longer distance than the closer one.  It happened because the agent with the closer area to Kaabah is facing the crowded peoples. It means an obstacle has the more impact than the distances in this case.
Pengembangan Aplikasi Virtual Tour Taman Harmoni Sebagai Sarana Promosi Wisata di Kota Surabaya Zakha Maisat Eka Darmawan; Ashafidz Fauzan Dianta; Akhmad Alimudin; Aliv Faizal Muhammad; Dwi Susanto; Hestiasari Rante; Irma Wulandari; Kholid Fathoni; Moh Zikky; Muhammad Agus Zainuddin; Mifta Nauval Harizy; Rendra Suprobo Aji; Rosiyah Faradisa; Sritrusta Sukaridhoto; Tri Budi Santoso; Widi Sarinastiti
I-Com: Indonesian Community Journal Vol 4 No 3 (2024): I-Com: Indonesian Community Journal (September 2024)
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33379/icom.v4i3.5104

Abstract

Pada era digital sekarang, pemanfaatan teknologi multimedia digunakan pada berbagai bidang, terutama pariwisata. Virtual tour yang merupakan bagian dari virtual reality hadir untuk memberi manfaat ke masyarakat untuk mendapatkan pengalaman baru dengan melakukan tur secara dunia maya ke tempat wisata tertentu. Kegiatan ini menyajikan proses dan hasil dari kegiatan pengabdian masyarakat yang bekerja sama dengan Pemerintah Kota Surabaya untuk mengembangkan aplikasi virtual tour Taman Harmoni berbasis website. Dengan lima tahapan pelaksanaan, dari observasi lapangan hingga dokumentasi, kami dapat mempublikasikan aplikasi tersebut dengan laman web yang bisa diakses oleh masyarakat dimanapun dan kapanpun. Sebanyak 71,4% pengunjung aplikasi yang telah mengeksplorasi fitur-fitur yang disediakan memberikan umpan balik yang baik terhadap keberadaan aplikasi ini.
Comparison of Machine Learning Classification Methods for Weather Prediction: A Performance Analysis Zakha Maisat Eka Darmawan; Ashafidz Fauzan Dianta; Kholid Fathoni; Oktavia Citra Resmi Rachmawati; Kevin Ilham Apriandy
G-Tech: Jurnal Teknologi Terapan Vol 9 No 2 (2025): G-Tech, Vol. 9 No. 2 April 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i2.6649

Abstract

Weather classification is crucial in various sectors, including agriculture, transportation, and disaster management. Accurate weather prediction can help mitigate risks and improve decision-making in these fields. However, classifying weather conditions remains challenging due to the complex and dynamic nature of meteorological data. This study aims to compare different machine learning classification methods to determine the most effective model for weather classification. The research employs a structured methodology consisting of seven key steps: literature study, data understanding, exploratory data analysis, data preparation, modeling, evaluation, and hyperparameter tuning. The study used Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors, Gradient Boosting, AdaBoost, and Extra Trees to identify the best-performing classifier. Model evaluation was conducted using accuracy, precision, recall, and F1-score. The results indicate that Gradient Boosting achieved the highest performance, surpassing other models with an accuracy of 90.15%. To optimize the model further, hyperparameter tuning was conducted using GridSearchCV, and feature selection was done using SelectKBest. This process resulted in an improved accuracy of 90.22%, demonstrating the effectiveness of model optimization.