Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Media Statistika

THE INTERPLAY BETWEEN CLUSTERS, COVARIATES, AND SPATIAL PRIORS IN SPATIAL MODELLING OF COVID-19 IN SOUTH SULAWESI PROVINCE, INDONESIA Aswi Aswi; Muhammad Arif Tiro; Sudarmin Sudarmin; Sukarna Sukarna; Susanna Cramb
MEDIA STATISTIKA Vol 15, No 1 (2022): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.15.1.48-59

Abstract

A number of previous studies on Covid-19 have used Bayesian spatial Conditional Autoregressive (CAR) models. However, basic CAR models are at risk of over-smoothing if adjacent areas genuinely differ in risk. More complex forms, such as localised CAR models, allow for sudden disparities, but have rarely been applied to modelling Covid-19, and never with covariates. This study aims to evaluate the most suitable Bayesian spatial CAR localised models in modelling the number of Covid-19 cases with and without covariates, examine the impact of covariates and spatial priors on the identified clusters and which factors affect the Covid-19 risk in South Sulawesi Province. Data on the number of confirmed cases of Covid-19 (19 March 2020 -25 February 2022) were analyzed using the Bayesian spatial CAR localised model with a different number of clusters and priors. The results show that the Bayesian spatial CAR localised model with population density included fits the data better than a corresponding model without covariates. There was a positive correlation between the Covid-19 risk and population density. The interplay between covariates, spatial priors, and clustering structure influenced the performance of models. Makassar city and Bone have the highest and the lowest relative risk (RR) of Covid-19 respectively.
ESTIMATING AND FORECASTING COVID-19 CASES IN SULAWESI ISLAND USING GENERALIZED SPACE-TIME AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL Sukarna Sukarna; Nurul Fadilah Syahrul; Wahidah Sanusi; Aswi Aswi; Muhammad Abdy; Irwan Irwan
MEDIA STATISTIKA Vol 15, No 2 (2022): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.15.2.186-197

Abstract

A range of spatio-temporal models has been used to model Covid-19 cases. However, there is only a small amount of literature on the analysis of estimating and forecasting Covid-19 cases using the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model. This model is a development of the GSTARMA model which has non-stationary data. This paper aims to estimate and forecast the daily number of Covid-19 cases in Sulawesi Island using GSTARIMA models. We compared two models namely GSTARI and GSTIMA considering the root mean square error (RMSE). Data on a daily number of Covid-19 cases (from April 10, 2020, to May 07, 2021) were used. The location weight used is the inverse distance weight based on the distance between airports in the capital cities of each province. The appropriate models obtained based on the data are the GSTARIMA (1;0;1;1) model and the GSTARIMA (1;1;1;0) model. The results showed that the forecast for the number of new Covid-19 cases is accurate and reliable only for the short term.