Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Building of Informatics, Technology and Science

Polyp Identification from a Colonoscopy Image Using Semantic Segmentation Approach Wahyu Hauzan Rafi; Mahmud Dwi Sulistiyo; Sugondo Hadiyoso; Untari Novia Wisesty
Building of Informatics, Technology and Science (BITS) Vol 5 No 2 (2023): September 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i2.4083

Abstract

Colorectal Cancer (CRC) is a major contributor to cancer-related mortality worldwide, necessitating early detection and treatment of polyps to prevent cancer progression. A colonoscopy is a critical diagnostic procedure for identifying colon abnormalities and removing premalignant polyps. However, accurately segmenting polyps in colonoscopy images poses challenges due to their diverse appearance and indistinct boundaries. In this study, we investigate augmentation techniques to enhance polyp semantic segmentation using the U-Net model. Our analysis reveals that the most effective technique is found in sub-scenario 2.6.c with an input size of 320×320, striking a favorable balance between accuracy and efficiency. Additionally, we explore the benefits of larger input sizes, taking into account resource considerations. Moreover, we conduct further testing of the best augmentation technique identified in previous experiments with the SegNet model. The results show a 3.5% improvement in the dice coefficient and slightly better qualitative outcomes. However, it is important to note that this enhancement comes with a nearly fivefold increase in training time. Moving forward, our objective is to develop a unified model for segmenting diverse medical images, pushing the boundaries of polyp detection and medical imaging. This research provides valuable insights and lays the foundation for more advanced applications in polyp detection and medical image analysis.
Mask Detection on Motorcyclists Using YOLOv4 Firdauz, Salma Salsabila; Rachmawati, Ema; Sulistiyo, Mahmud Dwi
Building of Informatics, Technology and Science (BITS) Vol 4 No 4 (2023): March 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i4.2980

Abstract

The use of mask is a mandatory for everyone in the pandemic regulation to prevent the spread of COVID-19 infection. This becomes a pandemic regulation for everyone, especially in public places like in traffic situation, such as pedestrian and motorcyclists. However, many motorcyclists ignore this rule or do not use the mask properly, let alone they have high risk in being infected by the virus; Thus, a computer vision-based solution is required to help monitoring it. This study aims to built a system to automatically detect the use of mask on motorcyclists. Here, we propose a YOLOv4 model, one of YOLO variants, which is popular in the object detection task and featured with a considerably high speed in real-time situation. This study also implements domain adaptation to discuss the object detection performances. Based on the experimental results in various scenarios, our model obtained average accuracy of 78.3% and IoU of 64.8% for class with_mask, average accuracy of 78.4% and IoU of 56.3% for class without_mask, and average accuracy of 87% and IoU of 55.5% for class incorrect_mask