Abdul Hoyyi
Departemen Statistika, Fakultas Sains Dan Matematika, Universitas Diponegoro

Published : 108 Documents Claim Missing Document
Claim Missing Document
Check
Articles

ANALISIS STRUCTURAL EQUATION MODELLING PENDEKATAN PARTIAL LEAST SQUARE DAN PENGELOMPOKAN DENGAN FINITE MIXTURE PLS (FIMIX-PLS) (Studi Kasus: Kemiskinan Rumah Tangga di Indonesia 2017) Anggita, Esta Dewi; Hoyyi, Abdul; Rusgiyono, Agus
Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (671.926 KB) | DOI: 10.14710/j.gauss.v8i1.26620

Abstract

Poverty is a complex and multidimensional problem that links several dimensions. Statistical method that can explain the relationship between one latent variable with others is Structural Equation Modelling (SEM). The purpose of this study is to create a structural model of the relationship between education, health, economy and poverty in Indonesia in 2017 by using Structural Equation Modeling with Partial Least Square approach (SEM-PLS) based on predetermined indicators with the results of 11 valid indicators. Based on the model obtained, health has a significant positive effect on education, health and education have a significant positive effect on the economy and the economy has a significant negative effect on poverty. Segmentation based on the relationship of latent variables in structural models can be overcome by Finite Mixture Partial Least Square (FIMIX-PLS) so that it can identify poverty areas in each province in Indonesia with more homogeneous characteristics. The best segmentation result is number of segments (K) = 2 obtained based on the criteria of AIC, BIC, CAIC and Normed Entropy (EN) with an EN value of 0.964 which means the quality of segment separation is very good. Papua and West Papua provinces form one segment in segment 2, while 32 other provinces form one segment in segment 1.Keywords: Poverty, Structural Equation Modelling, Partial Least Square, Finite Mixture, Segmentation.
ANALISIS PENGARUH JUMLAH UANG BEREDAR DAN NILAI TUKAR RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN PEMODELAN REGRESI SEMIPARAMETRIK KERNEL Nanda, Deden Aditya; Suparti, Suparti; Hoyyi, Abdul
Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (810.316 KB) | DOI: 10.14710/j.gauss.v5i3.14693

Abstract

Stocks are one of the many forms of investment chosen by the investor. Investors can use Composite Stock Price Index (CSPI) as one of the indicators that show the movement of stock prices. CSPI fluctuates every day, where one of the causes are macroeconomic factors. Therefore needs to be done a proper analysis to model the CSPI and the factors that influence it. This study is using 1 parametric component variable (money supply) and 1 nonparametric component variable (exchange rate the rupiah against the dollar). So that proper modeling is semiparametric regression. Nonparametric component will be using kernel regression method by selecting the optimal bandwidth using a generalized cross validation method (GCV). This study uses monthly data. Data in sample is used as much as 68 data that is taken from Januari 2010 to August 2015, meanwhile out sample that is used as much as 6 data from September 2015 to February 2016. Based on the results of the analysis that has been done, the best kernel semiparametric regression model is using gaussian kernel function with bandwidth is around 47.94 and GCV=34675.27047. Determination coefficient value is 0.9781. Evaluation result of the model for value of Mean Absolute Percentage Error (MAPE) data out sample is around 4,036%, which indicates that the model is very accurate.Keywords: Composite Stock Price Index (CSPI), Semiparametric regression, Kernel, GCV
PEMBENTUKAN MODEL LOG LINIER EMPAT DIMENSI (Studi Kasus : Rata-rata Pengguna Jenis Bahan Bakar Minyak berdasarkan Jenis Kendaraan, Rasio Kompresi dan Kapasitas Mesin) Sari, Juli Sekar; Wilandari, Yuciana; Hoyyi, Abdul
Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (590.002 KB) | DOI: 10.14710/j.gauss.v5i3.14698

Abstract

Based on the data from the Central Bureau of statistics, Indonesia's population is 237 million, an increase of 15.2% of the total population in 2000. With the increasing of the population from year to year, automatically the growth of vehicles will also experience increased. The impact of the increase in the number of motor vehicles is surely in the form of fuel consumption. Moreover, many factors will consider by the people to choose the type of fuel for their vehicle. Those factors included in the internal and external factors of the vehicle itself. At first, the internal factors in question are the type of vehicle, the compression ratio of the engine, and engine capacity. This research was conducted to find out the relationship between the internal factors with the log-linear Models. Log-linear Model was used to analyze the relationship between the variable responsesthat arewhich formed the contingency table. In this case, the researcher used log-linear Model of four dimensions with the step of analysis, as follows: outlining the possible model with diagram’s association, looking for the grade of frequency estimation of hope of any possible model, examining the Goodness of Fit of each model to find out the significant one, and determining the best model, in this case by looking at the smallest value of AIC. From the log-linear Model four dimensions is obtained the best model is the Model (WX, XY, XZ, YZ YZ) which means in case of this research there is a relationship between the type of fuel (W)*type of vehicle (X), the type of vehicle (X)*the compression ratio of the engine (Y), the type of vehicle (X)*engine capacity (Z), and the compression ratio of the engine (Y)*Engine Capacity(Z), with the value of AIC = -184. Keywords:, Log linear models four dimention, AIC 
PEMODELAN KURS MATA UANG RUPIAH TERHADAP DOLLAR AMERIKA MENGGUNAKAN METODE GARCH ASIMETRIS Sulistyowati, Ulfah; Tarno, Tarno; Hoyyi, Abdul
Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.729 KB) | DOI: 10.14710/j.gauss.v4i1.8155

Abstract

One factor causing to slowing economic growth in Indonesia is the currency exchange rate. In Indonesia,the exchange rate of the rupiah against the dollar is always become an attention of society. To monitor the movement needed a mathematical model that can be used to forecast the rupiah exchange rate to the dollar. Data rupiah exchange rate against the dollar is a financial time series data has a non-constant volatility. One model that is often used for the prediction of these data is ARIMA-GARCH. In this study discussed about modeling the data rate of the rupiah against the dollar using asymmetric GARCH, such as exponential GARCH (EGARCH), Threshold GARCH (TGARCH) and Autoregressive Power ARCH (APARCH). Modeling the exchange rate against the dollar using all three types of the Asymmetric GARCH models produce the best models, the ARIMA ([4.5], 1, [4,5]) - APARCH (2,1). With the results obtained using the model for volatility forecasting that volatility decreased from the previous forecast but still be at its high volatility.Keywords : Exchange rate, ARIMA, GARCH, Asymmetric GARCH, volatilty
PREDIKSI JUMLAH PENUMPANG KERETA API MENGGUNAKAN MODEL VARIASI KALENDER DENGAN DETEKSI OUTLIER (Studi Kasus : PT. Kereta Api Indonesia DAOP IV Semarang) Saputri, Ani Funtika; Hoyyi, Abdul; Sugito, Sugito
Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.055 KB) | DOI: 10.14710/j.gauss.v6i3.19301

Abstract

Transportation is an inseparable and indispensable part of society in everyday life. Trains became one of the most popular public transportation, especially during the Eid. The shifting of the lunar month of Eid forms a pattern called calendar variation. The calendar variation model is a model that combines the dummy regression model with the ARIMA model. In time series models sometimes there are outliers that can affect the suitability of the model. So that modeling and forecasting method is done using model of calendar variation with outlier detection. Based on the analysis that has been done on the data of the number of passengers of Argo Bromo Anggrek railway, we get the ARIMA model ([11], 0, 1), Dt, Dt-2,t with the addition of 4 outliers as the best model and the resulted forecasting shows increase Railway passengers increase in the months leading up to Eid. Keywords: Train, Calendar Variations, Outlier Detection
METODE GENERALIZED MEAN DISTANCE-BASED K-NEAREST NEIGHBOR CLASSIFIER (GMDKNN) UNTUK ANALISIS CREDIT SCORING CALON DEBITUR KREDIT TANPA AGUNAN (KTA) Saraswati, Mei Sita; Mukid, Moch. Abdul; Hoyyi, Abdul
Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (751.147 KB) | DOI: 10.14710/j.gauss.v8i1.26629

Abstract

Unsecured Credit is one of the credit facilities provided by banks, where the prospective debtor can borrow some amount of fund from the bank without having to provide collateral. Credit scoring is a process that aims to assess the worthiness of credit applications and classify the credit applicants into prospective debtors whose the credit application is worthy to be accepted and prospective debtors whose the credit application should be rejected. One of the statistical methods that can be applied in examining the analysis of credit scoring is the Generalized Mean Distance-Based k-Nearest Neighbor (GMDKNN) classifier. Empirical study on this method uses 23,337 data of prospective debtor of unsecured credit in 2018, with the dependent variable being the credit scoring final decision and seven independent variables, i.e. age, child dependent, length of employment, age of the company, income, loan proposed, and duration of credit. Based on the feature selection test, all independent variables are significantly taking effect on the credit scoring final decision. The best classification model is obtained in the parameters k = 137 and p = -1 with the classification performance metrics represented by the values of APER = 0,2580, accuracy = 74,20%, sensitivity = 0,6083, specificity = 0,8393, AUC = 0,7238, and G-Mean = 0,7146.Keywords: Unsecured Credit, credit scoring, classification, Generalized Mean Distance-Based k-Nearest Neighbor (GMDKNN).
ANALISIS FAKTOR – FAKTOR YANG MEMPENGARUHI JUMLAH KEJAHATAN PENCURIAN KENDARAAN BERMOTOR (CURANMOR) MENGGUNAKAN MODEL GEOGRAPHICALLY WEIGHTED POISSON REGRESSION (GWPR) Haris, Muhammad; Yasin, Hasbi; Hoyyi, Abdul
Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (406.717 KB) | DOI: 10.14710/j.gauss.v4i2.8404

Abstract

Theft is an act taking someone else’s property, partially or entierely, with intention to have it illegally. Motor vehicle theft is one of the most highlighted crime type and disturbing the communities. Regression analysis is a statistical analysis for modeling the relationships between response variable and predictor variable. If the response variable follows a Poisson distribution or categorized as a count data, so the regression model used is Poisson regression. Geographically Weighted Poisson Regression (GWPR) is a local form of Poisson regression where data sampling location is prioritized. GWPR model is used for identifying the factors that influence the numbers of motor vehicles theft, either using a weighted gauss kernel function or bisquare kernel function. Based on the value of Akaike Information Criterion (AIC) of Poisson regression and GWPR model, it is analyzed that GWPR model using a weighted fixed bisquare kernel function is the best model for analyzing the number of motor vehicles theft at every Sub-Districts in the Semarang city in 2012, because it has the smallest AIC value. This model has a precision of 88,81%.Keywords: Motor Vehicle Theft, Geographically Weighted Poisson Regression, Kernel Gauss Function, Kernel Bisquare Function, Akaike Information Criterion
SISTEM INFORMASI POTENSI KREDIT MACET BERBASIS APLIKASI CREDIT SCORING-SUPPORT VECTOR MACHINE (CSSVM) Yasin, Hasbi; Hakim, Arief Rachman; Hoyyi, Abdul
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 2 (2020)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Asset utama dari sebuah bank adalah besarnya dan kredit yang dikelola bank, karena kredit juga merupakan konstributor yang paling signifikan terhadap pendapatan sebuah institusi perbankan. Oleh karena itu, deteksi dini terhadap munculnya kredit macet sangat diperlukan. Salah satunya adalah dengan menggunakan sistem informasi potensi kredit macet yang dibangun berdasarkan model Support Vector Machine (SVM). SVM merupakan salah satu metode klasifikasi yang bersifat non linier dan non parametrik, sehingga tidak diperlukan adanya asumsi yang membatasi terhadap distribusi data tertentu. Dalam penelitian ini, potensi kredit macet dilihat dari lima indikator, yaitu: nominal kredit, saldo rekening, suku bunga, jangka waktu kredit, dan lama menjadi nasabah sebuah bank. Berdasarkan beberapa skenario spesifikasi model SVM yang digunakan, diperoleh tingkat akurasi model SVM mencapai 95% untuk data training, dan 90% untuk data testing. Dengan demikian, dapat dikatakan bahwa sistem ini dapat dijadikan sebagai alat untuk mendeteksi adanya potensi kredit macet dari sebuah aplikasi kredit dengan melihat indikator yang digunakan. Kata kunci: Credit Scoring, Sistem Informasi, SVM.
VARIANCE GAMMA PROCESS WITH MONTE CARLO SIMULATION AND CLOSED FORM APPROACH FOR EUROPEAN CALL OPTION PRICE DETERMINATION Hoyyi, Abdul; Abdurakhman, Abdurakhman; Rosadi, Dedi
MEDIA STATISTIKA Vol 14, No 2 (2021): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.14.2.183-193

Abstract

The Option is widely applied in the financial sector.  The Black-Scholes-Merton model is often used in calculating option prices on a stock price movement. The model uses geometric Brownian motion which assumes that the data is normally distributed. However, in reality, stock price movements can cause sharp spikes in data, resulting in nonnormal data distribution. So we need a stock price model that is not normally distributed. One of the fastest growing stock price models today is the  process exponential model. The  process has the ability to model data that has excess kurtosis and a longer tail (heavy tail) compared to the normal distribution. One of the members of the  process is the Variance Gamma (VG) process. The VG process has three parameters which each of them, to control volatility, kurtosis and skewness. In this research, the secondary data samples of options and stocks of two companies were used, namely zoom video communications, Inc. (ZM) and Nokia Corporation (NOK).  The price of call options is determined by using closed form equations and Monte Carlo simulation. The Simulation was carried out for various  values until convergent result was obtained.
SPATIAL PATTERN PENYEBARAN MALARIA DI JAWA TENGAH Alan Prahutama; Abdul Hoyyi
Jurnal Statistika Universitas Muhammadiyah Semarang Vol 4, No 2 (2016): Jurnal Statistika
Publisher : Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muham

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (348.544 KB) | DOI: 10.26714/jsunimus.4.2.2016.%p

Abstract

Malaria merupakan penyakit endemik yang ditularkan oleh nyamuk Anopheles.Penyebaran penyakit malaria sering terjadi pada daerah tropis, termasuk Indonesia. Beberapa faktor penyebab penyebaran penyakit malaria yang dpat dianalisissalah satunya faktor lingkungan. Faktor lingkungan dari setiap wilayah dapat ditinjau dari kepadatan penduduk, banyaknya tenaga kesehatan, banyaknya puskesmas/rumah sakit, prosentasi kemiskinan serta angka gizi buruk.Untuk enganalisis penyebaran penyakit malaria di kabupaten/kota di Jawa Tengah dapat menggunakan metode spasial, karena melibatkan wilayah (spasial). Hal ini dikarenakan fenomena wilayah yang tidak bisa dilepaskan yaitu lokasi yang berdekatan akan memberi pengaruh yang lebih banyak dibandingkan dengan lokasi yang berjauhan. Salah satu metode statistika spasial yang digunakan untuk mengetahui pola penyebaran adalah Indeks Morans.Kata Kunci:Morans I, Spatial Pattern, Penyebaran Malaria
Co-Authors Abdurakhman Abdurakhman Afifah Alrizqi Agus Rusgiyono Agus Somantri Ahmat Dhani Riau Bahtiyar Alan Prahutama Alan Prahutama Alifah Zahlevi Allima Stefiana Insani Alvi Waldira Alwi Assegaf Amelia Crystine Anggit Ratnakusuma Anggita, Esta Dewi Anik Nurul Aini Annisa Intan Mayasari ANNISA RAHMAWATI Ari Fakhrus Sanny Arief Rachman Hakim Arya Huda Arrasyid Aulia Desy Deria Avia Enggar Tyasti Bella Cynthia Devi Besya Salsabilla Azani Arif Bisri Merluarini Bitoria Rosa Niashinta Budi Warsito Budi Warsito Candra Silvia Chyntia Arum Widyastusti Cindy Wahyu Elvitra Darwanto Darwanto Dea Manuella Widodo Deby Fakhriyana, Deby Dede Zumrohtuliyosi Deden Aditya Nanda, Deden Aditya Dedi Rosadi Dermawanti Dermawanti Desriwendi Desriwendi Dewi Erliana Dewi Setya Kusumawardani Dhea Kurnia Mubyarjati Di Asih I Maruddani Di Asih I Maruddani Di Asih I Maruddani Diah Safitri Diah Safitri Diah Wulandari Dilla Retno Deswita Dwi Ispriyanti DWI RAHMAWATI Emyria Natalia br Sembiring Endah Cahyaningrum Erna Musri Arlita Esti Pratiwi Faiqotul Himmah Fiki Farkhati Firda Dinny Islami Fitra Ramdhani Gayuh Kresnawati Hasbi Yasin Hasbi Yasin Henny Setyowati Herwindhito Dwi Putranto Ikha Rizky Ramadani Indri Puspitasari Irfan Afifi Isowedha Widya Dewi Issabella Marsasella Christy Jeffri Nelwin J. O. Siburian Juli Sekar Sari, Juli Sekar Kartikaningtiyas Hanunggraheni Saputri Khotimatus Sholihah Khusnul Umi Fatimah Kiki Febri Azriati Koko Arie Bowo Kristika Safitri Kumo Ratih Leni Pamularsih Maidiah Dwi Naruri Saida Malik Hakam Mega Fitria Andriyani Mega Fitria Andriyani Mia Anastasia Sinulingga Moch. Abdul Hoyyi Moch. Abdul Mukid Moch. Abdul Mukid MUHAMMAD HARIS Mustafid Mustafid Mustafid Mustafid Mutiara Ardin Rifkiani Nadya Kiki Aulia Nandang Fahmi Jalaludin Malik Novika Pratnyaningrum Nurissalma Alivia Putri Nurul Fauziah Ovie Auliya’atul Faizah Priska Rialita Hardani Purina Pakurnia Artiguna Rita Rachmawati Rita Rahmawati Rita Rahmawati Rizki Pradipto Widyantomo Rizky Oky Ari Satrio Rukun Santoso Saputri, Ani Funtika Saraswati, Mei Sita Shaumal Luqman Silvia Nur Rinjani SITI NURLATIFAH Sudarno Sudarno Sudarno Sudarno Sugito - Sugito Sugito Sugito Sugito Suparti Suparti Suparti Suparti Tarno Tarno Tarno Tarno Tatik Widiharih Tatik Widiharih Tatik Widiharih Titis Nur Utami Tresno Sayekti Nuryanto Triastuti Wuryandari Triastuti Wuryandari Trisnawati Gusnawita Berutu Ubudia Hiliaily Chairunnnisa Ulfah Sulistyowati Yosi Dhyas Monica Yuciana Wilandari Yuciana Wilandari Yudia Yustine Yunisa Ratna Resti Yustian Dwi Saputra