Silcillya Ayu Astiti
Universitas Muhammadiyah Malang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Permintaan Beras Mengggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation (Studi Kasus: CV.PUSPA) Silcillya Ayu Astiti; Gita Indah Marthasari; Yufis Azhar
Jurnal Repositor Vol 3 No 5 (2021): November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v3i5.1395

Abstract

Indonesia sebagai negara yang mayoritas penduduknya memilih beras sebagai sumber pangan utama, di tahun 2020 mengalami penurunan pola konsumsi yang mengakibatkan permintaan beras yang seharusnya stabil menjadi berkurang. Menurunnya daya beli masyarakat akan beras berdampak pada beberapa penyetok beras atau yang biasa disebut dengan agen beras untuk membeli beras pada perusahaan produksi beras. Untuk meminimalisir kerugian yang dialami oleh perusahaan produksi beras, terdapat salah satu cara yang dapat diterapkan, yaitu dengan melakukan peramalan data menggunakan metode jaringan syaraf tiruan backpropagation yang pada penelitian ini data yang digunakan merupakan data permintaan beras Perusahaan CV. PUSPA yang bersifat time series. Skenario pemodelan pada penelitian menerapkan 1-5 hidden layer dengan jumlah neuron hidden yang berbeda di setiap percobaannya. Hasil yang diperoleh memperlihatkan bahwa menggunakan jaringan syaraf tiruan backpropagation menunjukkan prediksi yang baik yang pada penelitian ini hasil terbaik terdapat pada arsitektur 7-50-200-300-250-300-1 dengan MSE = 0.001278, RMSE = 0,301950 di proses pelatihan dan hasil MSE = 0.002391, RMSE = 0.204972 di proses pengujian.
Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras Gita Indah Marthasari; Silcillya Ayu Astiti; Yufis Azhar
Jurnal Informatika: Jurnal Pengembangan IT Vol 6, No 3 (2021): JPIT, September 2021
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v6i3.2627

Abstract

Recently, Indonesia, as a country where the majority of the population chooses rice as the primary food source, gets a decline in the rice consumption patterns, which resulted in reduced demand for rice that should have been stable. The decrease of rice purchasing power impacts several rice suppliers, commonly referred to as rice agents, to buy rice from rice production companies. Therefore, prediction of rice stock is essential to do. This paper aims to apply the backpropagation neural network method to forecast the amount of rice demand. The data used in the study is time-series data in the form of the number of requests for rice as much as 609 data from two types of rice. The modeling scenario in this study applies one to five hidden layers with a different number of hidden neurons in each experiment. The elastic net regularization method was applied after the data denormalization process to improve the quality of the resulting model. Based on the experiments, obtained the best model on architecture 7-50-200-300-250-300-1 with MSE = 0.001278, RMSE = 0.301950 in the training process and MSE results = 0.002391, RMSE = 0.204972 in the testing process.