Norizan Mohamed
Department of Mathematics, Faculty of Science and Technology, Universiti Malaysia Terengganu (UMT).

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

CRYPTOCURRENCY TIME SERIES FORECASTING MODEL USING GRU ALGORITHM BASED ON MACHINE LEARNING Melina, Melina; Sukono, Sukono; Napitupulu, Herlina; Mohamed, Norizan; Herry Chrisnanto, Yulison; ID Hadiana, Asep; Kusumaningtyas, Valentina Adimurti
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1317-1328

Abstract

The cryptocurrency market is experiencing rapid growth in the world. The high fluctuation and volatility of cryptocurrency prices and the complexity of non-linear relationships in data patterns attract investors and researchers who want to develop accurate cryptocurrency price forecasting models. This research aims to build a cryptocurrency forecasting model with a machine learning-based time series approach using the gated recurrent units (GRU) algorithm. The dataset used is historical Bitcoin closing price data from January 1, 2017, to July 31, 2024. Based on the gap in previous research, the selected model is only based on the accuracy value. In this study, the chosen model must fulfill two criteria: the best-fitting model based on the learning curve diagnosis and the model with the best accuracy value. The selected model is used to forecast the test data. Model selection with these two criteria has resulted in high accuracy in model performance. This research was highly accurate for all tested models with MAPE < 10%. The GRU 30-50 model is best tested with MAE = 867.2598, RMSE = 1330.427, and MAPE = 1.95%. Applying the sliding window technique makes the model accurate and fast in learning the pattern of time series data, resulting in a best-fitting model based on the learning curve diagnosis.
COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS Melina, Melina; Sukono, Sukono; Napitupulu, Herlina; Mohamed, Norizan; Chrisnanto, Yulison Herry; Hadiana, Asep ID; Kusumaningtyas, Valentina Adimurti; Nabilla, Ulya
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2563-2576

Abstract

Gold price fluctuations have a significant impact because gold is a haven asset. When financial markets are volatile, investors tend to turn to safer instruments such as gold, so gold price forecasting becomes important in economic uncertainty. The novelty of this research is the comparative analysis of time series forecasting models using ARIMA and the NNAR methods to predict gold price movements specifically applied to gold price data with non-stationary and non-linear characteristics. The aim is to identify the strengths and limitations of ARIMA and NNAR on such data. ARIMA can only be applied to time series data that are already stationary or have been converted to stationary form through differentiation. However, ARIMA may struggle to capture complex non-linear patterns in non-stationary data. Instead, NNAR can handle non-stationary data more effectively by modeling the complex non-linear relationships between input and output variables. In the NNAR model, the lag values of the time series are used as input variables for the neural network. The dataset used is the closing price of gold with 1449 periods from January 2, 2018, to October 5, 2023. The augmented Dickey-Fuller test dataset obtained a p-value = 0.6746, meaning the data is not stationary. The ARIMA(1, 1, 1) model was selected as the gold price forecasting model and outperformed other candidate ARIMA models based on parameter identification and model diagnosis tests. Model performance is evaluated based on the RMSE and MAE values. In this study, the ARIMA(1, 1, 1) model obtained RMSE = 16.20431 and MAE = 11.13958. The NNAR(1, 10) model produces RMSE = 16.10002 and MAE = 11.09360. Based on the RMSE and MAE values, the NNAR(1, 10) model produces better accuracy than the ARIMA(1, 1, 1) model.