Claim Missing Document
Check
Articles

Found 17 Documents
Search

Pengaruh Price Discount dan in-Store Display terhadap Impulse Buying pada Matahari Department Store di Samarinda Melina, Melina; Kadafi, M. Amin
FORUM EKONOMI Vol 19, No 2 (2017)
Publisher : Faculty of Economics and Business Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (376.891 KB) | DOI: 10.29264/jfor.v19i2.2126

Abstract

The effect of Price Discount and In-Store Display toward Impulse Buying in Matahari Department Store Samarinda, under supervised by Mr. Suharno and Mr. M.Amin Kadafi. The purpose of this study is to know is there any positive influence and significant from price discount variable and In-store display toward impulse buying variable. The analysis technique employed in this research was the multiple linier regression analysis.Based on the result of the research and discussion of the data, the writer can conclude that price discount has positive effect and significant toward impulse buying in Matahari Department Store Samarinda.
Dampak Resesi Dunia Di Indonesia Tahun 2023 Ciptawan, Ciptawan; Melina, Melina
Jurnal Bangun Manajemen Vol. 2 No. 2: November 2023
Publisher : PT Bangun Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56854/jbm.v2i2.233

Abstract

Resesi dunia merupakan ancaman ekonomi yang berpengaruh diberbagai aspek. Banyak faktor yang menjadi pemicu terjadinya resesi di tahun 2023 ini, diantaranya yaitu : Pandemi Covid-19, Perang Rusia-Ukraina, tingginya tingkat inflasi dan kenaikan suku bunga acuan. Dimana Amerika Serikat, Eropa, China, Mongolia, Korea Selatan dan Indonesia menjadi Negara yang mengalami resesi. Dimata Indonesia krisis ekonomi pernah terjadi pada tahun 1998, 2008, 2013, dan tahun 2020. Kalaupun disebut resesi global, kondisi ekonomi dunia 2023 diperkirakan lebih ringan dibandingkan krisis sebelumnya. Yang paling dekat adalah resesi sebagai dampak langsung dari pandemi Covid-19. Tahun 2020, ekonomi dunia terkontraksi 3,0 persen. Resesi ekonomi dunia 2009 yang terjadi karena krisis keuangan global tahun 2008. Pada 2009, ekonomi dunia mengalami kontraksi 0,1 persen. Ekonomi Indonesia dapat tumbuh 4,7 persen dan rebound 6,4 persen pada 2010. Dengan proyeksi IMF tahun 2023, pertumbuhan ekonomi Indonesia lebih dari 5 persen bukanlah hal yang sulit.
THE INFLUENCE OF RETURN ON EQUITY, CURRENT RATIO AND EARNING PER SHARE TOWARD STOCK PRICE OF CONSUMER GOODS INDUSTRY LISTED ON THE INDONESIA STOCK EXCHANGE Melina, Melina; Steffani, Steffani
Proceedings of the International Conference on Entrepreneurship (IConEnt) Vol. 2 (2022): Proceedings of the 2nd International Conference on Entrepreneurship (IConEnt)
Publisher : Universitas Pelita Harapan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The aim of this research is to find out the influence of return on equity, current ratio, and earnings per share on the stock price of consumer goods industry listed on the Indonesia Stock Exchange (IDX) for the year 2017-2020. This is quantitative research with a purposive sampling method as the selected sampling method to be used. The data is secondary data derived from Indonesia Stock Exchange. In total, companies that meet the sample criteria amount to 25 companies from 2017 to 2020, resulting in a total of 100 data. The data analysis method applied is multiple linear regression which is processed through SPSS 25. The findings of this research show that, partially, return on equity has an insignificant influence toward stock price, whereas current ratio and earnings per share have a significant influence toward stock price of consumer goods industry listed on the Indonesia Stock Exchange (IDX) for the year 2017-2020. On the other hand, those three independent variables simultaneously have significant influence on stock price.
The presence of beneficial insects and damage intensity of cocoa pod borer (Conopomorpha cramerella Snellen) in plantations with and without insectary plants Dewi, Vien Sartika; Sjam, Sylvia; Melina, Melina; Muhtar, Muhtar; Wahyuni, Resky Ayu; Sulastri, Elsa; Sulaeha, Sulaeha
Jurnal Hama dan Penyakit Tumbuhan Tropika Vol. 25 No. 2 (2025): SEPTEMBER, JURNAL HAMA DAN PENYAKIT TUMBUHAN TROPIKA: JOURNAL OF TROPICAL PLAN
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jhptt.225179-189

Abstract

The cocoa pod borer (CPB), Conopomorpha cramerella Snellen, is one of the most significant pests of cocoa, capable of damaging pods and reducing production. Synthetic insecticides are predominantly used to control this pest; therefore, alternative methods that are environmentally friendly and do not harm non-target organisms are needed. This study aims to determine the role of beneficial insect occurrence, enhanced by insectary plants, in reducing the severity of pod damage and yield loss caused by CPB. The research was conducted by comparing two one-hectare farms, one with and one without insectary plants. The beneficial insects observed included pollinators, predators, parasitoids, decomposers, and herbivores. Their populations were higher on the farm with insectary plants than on the farm without, with pod damage severity of 16.8% and 32.8%, respectively. These data indicate that cultivating insectary plants on cocoa farms can aid in pest management, particularly for CPB, and has the potential to be implemented on a larger scale, as CPB attack intensity was lower on the farm with insectary plants.
Pengendalian Konsumsi Gula Dalam Mencegah Penyakit Diabetes Melitus Tipe II Di Usia Dini Lestari, Trisna; Bachtiar, Arsyad; Kurniawa, Agus; Feyki, Della Fitrian; Melina, Melina; Fitri, Aisyah Nur; Baqiyatusshalihah, Ratu Binar; Rizky, Muhammad; Audriana, Reza; Luthfiah, Ade Sofi; Dipriana, Dipriana
Abdi Geomedisains Vol. 6, No. 1, June 2025
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/abdigeomedisains.v6i1.6892

Abstract

Diabetes Mellitus (DM) is a chronic disease caused by a lack of insulin production or resistance to insulin, which leads to increased glucose levels in the body. This disease has an increasing prevalence, both in developed and developing countries, and is becoming a global health problem. One of the main factors at risk of increasing DM is lifestyle and habits, especially the habit of consuming sweet foods and lack of physical activity. This research aims to provide education about controlling sugar consumption in preventing Type II Diabetes Mellitus at an early age, with a focus on PMR MTSN 1 Cirebon students. The method used is direct outreach in the form of counseling with presentations using PPT and LCD. This research used convenience sampling techniques and involved 36 students as respondents. Data collection was carried out through pretest and posttest with a questionnaire containing 10 questions to assess knowledge about DM and the impact of excessive sugar consumption. The data obtained were analyzed using the Paired t-Test with IBM SPSS Statistics Version 17.0 software to determine differences in knowledge before and after counseling. It is hoped that the results of the research will increase teenagers' awareness of the importance of a healthy lifestyle, especially in controlling sugar consumption, in order to prevent Type II Diabetes Mellitus.
Klasifikasi Kanker Payudara Berbasis Deep Learning Menggunakan Vision Transformer dengan Teknik Augmentasi Data Citra Ardiyansyah, Muhamad Salman; Umbara, Fajri Rakhmat; Melina, Melina
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8619

Abstract

Breast cancer ranks among the leading causes of death in women worldwide. Early detection through mammographic image analysis plays a crucial role in increasing survival rates. However, manual interpretation of mammograms requires expert knowledge and is prone to errors. This study aims to develop a breast cancer classification model using mammography images based on the Vision Transformer (ViT) architecture without employing transfer learning. The dataset used is the Digital Database for Screening Mammography (DDSM), consisting of two categories: benign and malignant. To address class imbalance, undersampling and data augmentation techniques (flipping, rotation, cropping, and noise injection) were applied. All images were normalized and resized to 224×224 pixels to match the ViT input requirements. The model was trained for five epochs with a batch size of 16. Evaluation on the test data was conducted using seven metrics: accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen’s Kappa Score, and Area Under the Curve (AUC). The results show that the model achieved an accuracy of 92.50%, precision of 90.48%, recall of 95.00%, F1-score of 92.68%, MCC of 85.11%, Kappa Score of 85.00%, and AUC of 95.75%. These findings indicate that the Vision Transformer is highly effective for mammographic image classification and holds potential as a reliable tool for automated breast cancer diagnosis support.
Prediksi Risiko Kesehatan Mental Mahasiswa Menggunakan Klasifikasi Naive Bayes Sumantri, Fithra Aditya; Chrisnanto, Yulison Herry; Melina, Melina
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8648

Abstract

The mental health of university students is a growing concern as academic, emotional, and social pressures contribute to increased psychological risks. This study aims to classify mental health risk levels Low, Medium, and High among students using the Naïve Bayes classification algorithm. A dataset consisting of 1,000 entries and 11 key variables was utilized, covering academic, psychological, and behavioral factors. The preprocessing stage included data cleaning, label encoding, normalization, and rule-based labeling to determine the target classes. Model training and testing were conducted using stratified data splitting to preserve class distribution. The initial model achieved a classification accuracy of 88,67%, with macro average F1-score of 0.87 and weighted average F1-score of 0.88. Grid Search optimization with k-fold cross-validation was applied but showed no significant improvement, indicating the model was already in optimal configuration. Furthermore, probabilistic analysis revealed that Sleep Quality and Study Stress Level were the most influential features in predicting mental health risks. The findings suggest that Naïve Bayes is effective for multi-class classification with interpretable results. This research contributes to early detection efforts and offers a foundation for targeted interventions in university mental health management.
Tinjauan Literatur: Hubungan antara Komunikasi Interpersonal Orang Tua dengan Anak Terhadap Kenakalan Remaja Annisa, Mumtaz; Melina, Melina; Fadila, Fadila; Saryono, Saryono
Jurnal Keperawatan Indonesia Timur (East Indonesian Nursing Journal) Vol 4 No 2 (2024): Juli - Desember 2024
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat Poltekkes Kemenkes Maluku

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32695/jkit.v4i2.512

Abstract

Abstrak Latar Belakang: Komunikasi adalah hal dasar yang dilakukan dalam kehidupan manusia melalui cara penyampaian dan penerimaan pesan ketika berkomunikasi dengan seseorang. Komunikasi dapat terjadi di lingkungan rumah, tempat bekerja, dan di mana saja. Pengaruh komunikasi yang kurang baik dapat mengakibatkan kesenjangan komunikasi interpersonal. Ketidakefektifan komunikasi interpersonal antara orang tua dan anak dapat mengakibatkan kenakalan remaja. Tujuan: Penelitian ini dilakukan untuk mengetahui komunikasi interpersonal antara orang tua dengan anak memiliki hubungan terhadap kenakalan remaja. Metode: Database yang digunakan dalam penelusuran literatur review ini adalah Google Scholar dan ScienceDirect. Hasil: Hasil literatur review komunikasi interpersonal antara orang tua dengan anak memiliki peran penting untuk mencegah kenakalan remaja yang dipengaruhi oleh faktor lingkungan dan pergaulan remaja. Kesimpulan: Berdasarkan hasil analisis 10 jurnal, komunikasi interpersonal orang tua yang membangun hubungan positif dengan anak akan menjadi petunjuk arah dalam menentukan lingkungan sosialnya. Kata kunci: komunikasi interpersonal, orang tua, anak, kenakalan remaja
FORMULASI DAN UJI HEDONIK (SENSORI DAN DESKRIPTIF) SEDIAAN MINUMAN HERBAL SERBUK SARI DAUN PUDING HITAM (Graptophyllum pictum L.) Griff Yanuarto, Tri; Novia, Devi; Melina, Melina; Haque, Aina Fatkhil
JFM (Jurnal Farmasi Malahayati) Vol 8, No 2 (2025)
Publisher : Jurnal Farmasi Malahayati (JFM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33024/jfm.v8i2.21817

Abstract

Nyeri dismenore dapat berdampak negatif bagi penderitanya karena dapat mengganggu atau bahkan menghentikan aktivitas sehari-hari, terutama saat menstruasi. Terdapat dua pendekatan untuk menangani nyeri dismenore: terapi farmakologis dan nonfarmakologis. Terapi farmakologis umumnya melibatkan penggunaan obat pereda nyeri, tetapi dapat menimbulkan efek samping seperti iritasi lambung. Terapi nonfarmakologis juga dapat digunakan, salah satunya melalui pengobatan herbal berupa minuman berbahan serbuk sari daun ungu (Graptophyllum pictum L.) Griff yang dimaniskan dengan gula aren. Penelitian ini bertujuan untuk memformulasikan ekstrak daun ungu menjadi serbuk instan sebagai minuman herbal untuk meredakan nyeri dismenore. Formulasi dilakukan dengan memvariasikan konsentrasi serbuk sari daun ungu untuk mengamati pengaruhnya terhadap uji organoleptik, uji pH, uji sensoris, dan uji deskriptif. Hasil penelitian ini menyatakan bahwa perbedaan konsentrasi serbuk sari daun ungu memengaruhi uji organoleptik dan uji hedonik dengan panelis menunjukkan bahwa formula 3 paling banyak disukai.
COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS Melina, Melina; Sukono, Sukono; Napitupulu, Herlina; Mohamed, Norizan; Chrisnanto, Yulison Herry; Hadiana, Asep ID; Kusumaningtyas, Valentina Adimurti; Nabilla, Ulya
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2563-2576

Abstract

Gold price fluctuations have a significant impact because gold is a haven asset. When financial markets are volatile, investors tend to turn to safer instruments such as gold, so gold price forecasting becomes important in economic uncertainty. The novelty of this research is the comparative analysis of time series forecasting models using ARIMA and the NNAR methods to predict gold price movements specifically applied to gold price data with non-stationary and non-linear characteristics. The aim is to identify the strengths and limitations of ARIMA and NNAR on such data. ARIMA can only be applied to time series data that are already stationary or have been converted to stationary form through differentiation. However, ARIMA may struggle to capture complex non-linear patterns in non-stationary data. Instead, NNAR can handle non-stationary data more effectively by modeling the complex non-linear relationships between input and output variables. In the NNAR model, the lag values of the time series are used as input variables for the neural network. The dataset used is the closing price of gold with 1449 periods from January 2, 2018, to October 5, 2023. The augmented Dickey-Fuller test dataset obtained a p-value = 0.6746, meaning the data is not stationary. The ARIMA(1, 1, 1) model was selected as the gold price forecasting model and outperformed other candidate ARIMA models based on parameter identification and model diagnosis tests. Model performance is evaluated based on the RMSE and MAE values. In this study, the ARIMA(1, 1, 1) model obtained RMSE = 16.20431 and MAE = 11.13958. The NNAR(1, 10) model produces RMSE = 16.10002 and MAE = 11.09360. Based on the RMSE and MAE values, the NNAR(1, 10) model produces better accuracy than the ARIMA(1, 1, 1) model.