Claim Missing Document
Check
Articles

Solving one-dimensional unconstrained global optimization problem using parameter free filled function method Ismail Bin Mohd; Yosza Dasril; Ridwan Pandiya; Herlina Napitupulu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.10885

Abstract

It is generally known that almost all filled function methods for one-dimensional unconstrained global optimization problems have computational weaknesses. This paper introduces a relatively new parameter free filled function, which creates a non-ascending bridge from any local isolated minimizer to other first local isolated minimizer with lower or equal function value. The algorithm’s unprecedented function can be used to determine all extreme and inflection points between the two considered consecutive local isolated minimizers. The proposed method never fails to carry out its job. The results of the several testing examples have shown the capability and efficiency of this algorithm while at the same time, proving that the computational weaknesses of the filled function methods can be overcomed.
WORKSHOP BUDIDAYA LEBAH MADU DI DESA PAMOYANAN KECAMATAN CIBINONG KABUPATEN CIANJUR Ida Widianingsih; Herlina Napitupulu; Dwi Indra Purnomo
Kumawula: Jurnal Pengabdian Kepada Masyarakat Vol 4, No 2 (2021): Kumawula: Jurnal Pengabdian Kepada Masyarakat
Publisher : Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/kumawula.v4i2.35399

Abstract

Salah satu tantangan pencapaian agenda SDGs ke 2 (Zero Hunger) terkait ketahanan pangan adalah penurunan  populasi lebah yang terjadi hampir di seluruh benua di dunia. Gagasan kegiatan Program Pengabdian Masyarakat (PPM) ini  terkait dengan peran lebah sebagai polinator tanaman terbaik untuk peningkatan produksi pangan. Kegiatan Program Pengabdian Masyarakat (PPM) ini merupakan  bagian dari upaya   Unpad dalam memberikan kontribusi untuk  menangani berbagai krisis lingkungan,  sejalan dengan Pola Ilmiah Pokok (PIP) Universitas Padjadjaran. Pelaksanaan PPM didasarkan pada hasil diskusi awal dengan pemerintah Desa Pamoyanan, Kecamatan Cibinong, Kabupaten Cianjur yang meminta pendampingan untuk mencari alternatif pendapatan masyarakat sesuai dengan  potensi wilayah. Sebagaimana situasi di desa-desa lain di Indonesia, Desa Cibinong yang secara geografis jauh dari ibu kota kabupaten mengalami tekanan ekonomi yang besar selama terjadinya pandemi Covid-19. Produk-produk pertanian dan perkebunan masyarakat sebagian besar sulit dipasarkan dan memiliki nilai ekonomi sangat rendah.  Kegiatan workshop ini diharapkan memberikan pengetahuan dan keterampilan masyarakat dalam memulai usaha peternakan lebah sebagai alternatif penambah penghasilan masyarakat di masa pandemik. Lebih jauh lagi pemilihan kegiatan workshop   dapat berimbas pada upaya pelaksanaan pembangunan berkelanjutan di tingkat desa.
Solusi Persamaan Diferensial Fraksional Riccati Menggunakan Adomian Decomposition Method dan Variational Iteration Method Muhamad Deni Johansyah; Herlina Napitupulu; Erwin Harahap; Ira Sumiati; Asep K. Supriatna
Matematika Vol 18, No 1 (2019): Jurnal Matematika
Publisher : Universitas Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jmtm.v18i1.4931

Abstract

Abstrak. Pada umumnya orde dari persamaan diferensial adalah bilangan asli, namun orde pada persamaan diferensial dapat dibentuk menjadi orde pecahan yang disebut persamaan diferensial fraksional. Paper ini membahas persamaan diferensial fraksional Riccati dengan orde diantara nol dan satu, dan koefisien konstan. Metode numerik yang digunakan untuk mendapatkan solusi dari persamaan diferensial fraksional Riccati adalah Adomian Decomposition Method (ADM) dan Variational Iteration Method (VIM). Tujuan dari paper ini adalah untuk memperluas penerapan ADM dan VIM dalam menyelesaikan persamaan diferensial fraksional Riccati nonlinear dengan turunan Caputo. Perbandingan solusi yang diperoleh menunjukkan bahwa VIM adalah metode yang lebih sederhana untuk mencari solusi persamaan diferensial fraksional Riccati nonlinier dengan orde antara nol dan satu, kemudian hasil yang diperoleh disajikan dalam bentuk grafik.Kata kunci: diferensial, fraksional, riccati, adomian dekomposisiThe solution of Riccati Fractional Differential Equation using Adomian Decomposition methodAbstract. Generally, the order of differential equations is a natural numbers, but this order can be formed into fractional, called as fractional differential equations.  In this paper, the Riccati fractional differential equations with order between zero and one, and constant coefficient is discussed.  The numerical methods used to obtain solutions from Riccati fractional differential equations are the Adomian Decomposition Method (ADM) and Variational Iteration Method (VIM).  The aim of this paper is to expand the application of ADM and VIM in solving nonlinear Riccati fractional differential equations with Caputo derivatives.  The comparison of the obtained solutions shows that VIM is simpler method for finding solutions to Riccati nonlinear fractional differential equations with order between zero and one. The obtained results are presented graphically.Keywords: riccati, fractional, differential, adomian, decomposition
PENGUATAN KONSEP MATEMATIKA MELALUI ALAT PERAGA MATEMATIKA PERMAINAN DI SDN CIKUDA JATINANGOR Edi Kurniadi; Nurul Gusriani; Betty Subartini; Herlina Napitupulu
BERNAS: Jurnal Pengabdian Kepada Masyarakat Vol 1 No 4 (2020)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (979.409 KB) | DOI: 10.31949/jb.v1i4.535

Abstract

Dalam artikel ini, didiskusikan bagaimana memotivasi siswa-siswa sekolah dasar khususnya para siswa di SDN Cikuda Jatinangor dalam memahami konsep matematika melalui alat-alat pembelajaran matematika. Tujuan utamanya adalah untuk menarik minat siswa dalam memahami konsep dasar matematika dengan lebih mudah. Metode yang digunakan untuk mencapai tujuan ini adalah student learning center. Selain itu, diberikan juga penjelasan kepada salah seorang perwakilan guru dan siswa melalui praktik penggunaan alat-alat pembelajaran matematika tersebut. Lebih jauh, karena kondisi COVID-19, kegiatan ini juga direalisasikan melalui pembuatan video pembelajaran yang dapat diakses di YouTube. Fokus utama dalam kegiatan ini adalah penekanan pada penguatan konsep aritmetika. Di sisi lain, penguatan konsep siswa dilakukan melalui problem solving di aplikasi zenius.
The Existence of Affine Structures on the Borel Subalgebra of Dimension 6 Edi Kurniadi; Ema Carnia; Herlina Napitupulu
ComTech: Computer, Mathematics and Engineering Applications Vol. 12 No. 1 (2021): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v12i1.6581

Abstract

The notion of affine structures arises in many fields of mathematics, including convex homogeneous cones, vertex algebras, and affine manifolds. On the other hand, it is well known that Frobenius Lie algebras correspond to the research of homogeneous domains. Moreover, there are 16 isomorphism classes of 6-dimensional Frobenius Lie algebras over an algebraically closed field. The research studied the affine structures for the 6-dimensional Borel subalgebra of a simple Lie algebra. The Borel subalgebra was isomorphic to the first class of Csikós and Verhóczki’s classification of the Frobenius Lie algebras of dimension 6 over an algebraically closed field. The main purpose was to prove that the Borel subalgebra of dimension 6 was equipped with incomplete affine structures. To achieve the purpose, the axiomatic method was considered by studying some important notions corresponding to affine structures and their completeness, Borel subalgebras, and Frobenius Lie algebras. A chosen Frobenius functional of the Borel subalgebra helped to determine the affine structure formulas well. The result shows that the Borel subalgebra of dimension 6 has affine structures which are not complete. Furthermore, the research also gives explicit formulas of affine structures. For future research, another isomorphism class of 6-dimensional Frobenius Lie algebra still needs to be investigated whether it has complete affine structures or not.
Comparative Analysis of Elementary School Student Knowledge Regarding Flood Mitigation in the Citarum Watershed Sukono Sukono; Eman Lesmana; Herlina Napitupulu
International Journal of Research in Community Services Vol 1, No 3 (2020)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijrcs.v1i3.103

Abstract

Flooding is a natural event, one of which is caused by the overflow of rivers. This disaster often occurs in the Dayeuhkolot area, Bandung Regency. Geographical conditions that are close to the flow of the Citarum River and the plains that are lower than the surrounding area cause this area to be flooded especially during the rainy season. This paper aims to analyze the effectiveness of disaster training given at a young age and analyze the effectiveness of training methods provided in the form of games and PowerPoint media. This activity is aimed at grade 6th students at BojongAsih Elementary School starting with the questionnaire I which functions as a pre-test and ends with questionnaire II which functions as a post-test. Questionnaires were given at the beginning and at the end to see the extent to which the material provided new influence and knowledge to BojongAsih Elementary School students. The results of the questionnaire showed that before counseling about flood mitigation, samples were categorized as having a good knowledge of 91% and having poor knowledge of 9%. After counseling about flood disaster mitigation using games and PowerPoint media there was an increase in knowledge, samples that had good knowledge were 98% and those with less good knowledge were 2%. Based on the pre-test and post-test results, this activity was proven successful in increasing the knowledge of BojongAsihElementary School related to flood mitigation.
Penguatan Konsep Matematika Dalam Pembelajaran Latex untuk Siswa SMP dan SMA Edi Kurniadi; Herlina Napitupulu; Alit Kartiwa; Riaman Riaman
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 5 No 1 (2021): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 5 Nomor 1 Tahun 2021
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v5i1.396

Abstract

Dalam artikel ini, kita belajar konsep coding dengan Latex melalui penguatan konsep matematika untuk siswa SMP dan SMA. Tujuan penelitian ini adalah untuk menarik minat para siswa dalam mempelajari coding melalui penguatan konsep matematika yang baik dan benar dengan memperkenalkan apa yang disebut Program Latex. Program Latex ini merupakan perangkat lunak alternatif selain Microsoft Word untuk pengetikan rumus-rumus matematika. Selanjutnya, metode yang digunakan dalam penelitian ini adalah deskriptif kualitatif untuk menggambarkan kemampuan siswa dalam memahami konsep dasar matematika dan implementasinya melalui pengetikan rumus-rumus matematika dengan Latex. Siswa dilatih agar supaya mempunyai pengetahuan yang baik dan benar tentang konsep dasar matematika, khususnya bagaimana cara membaca dan menulis rumus matematika secara sistematis. Hasil dari penelitian ini, para siswa dapat menulis rumus-rumus matematika dalam Program Latex dan mempunyai pemahaman konsep matematika yang baik dan benar yang tentunya akan menjadi modal dasar untuk memahami konsep coding untuk tingkatan yang lebih tinggi. Untuk penelitian selanjutnya, konsep matematika dapat direalisasikan melalui Pemograman Python. Melalui pendekatan Program Python ini, diharapkan para siswa akan menyukai penerapan-penerapan matematika dalam berbagai hal.
Systematic Literature Review Robust Graph Coloring on Electric Circuit Problems Viona Prisyella Balqis; Diah Chaerani; Herlina Napitupulu
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 4 (2022): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i4.9446

Abstract

Graph Coloring Problem (GCP) is the assignment of colors to certain elements in a graph based on certain constraints. GCP is used by assigning a color label to each node with neighboring nodes assigned a different color and the minimum number of colors used. Based on this, GCP can be drawn into an optimization problem that is to minimize the colors used. Optimization problems in graph coloring can occur due to uncertainty in the use of colors to be used, so it can be assumed that there is an uncertainty in the number of colored vertices. One of the mathematical optimization methods in the presence of uncertainty is Robust Optimization (RO). RO is a modeling methodology combined with computational tools to process optimization problems with uncertain data and only some data for which certainty is known. This paper will review research on Robust GCP with model validation to be applied to electrical circuit problems using a systematic review of the literature. A systematic literature review was carried out using the Preferred Reporting Items for Systematic reviews and Meta Analysis (PRISMA) method. The keywords used in this study were used to search for articles related to this research using a database. Based on the results of the search for articles obtained from PRISMA and Bibliometric R Software, it was found that there was a relationship between the keywords Robust Optimization and Graph Coloring, this means that at least there is at least one researcher who has studied the problem. However, the Electricity keyword has no relation to the other two keywords, so that a gap is obtained and it is possible if the research has not been studied and discussed by other researchers. Based on the results of this study, it is hoped that it can be used as a consideration and a better solution to solve optimization problems.
Optimalization Route to Tourism Places in West Java Using A-STAR Algorithm Muhammad Helambang Prakasa Yudha; Sudrajat Supian; Herlina Napitupulu
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i3.17032

Abstract

Various algorithms can be used in the problem of finding the optimal route, one of which is the A-STAR Algorithm. The characteristic for recording routes that have been evaluated is one of the advantages of the A-STAR Algorithm. This study focuses on finding the optimal route to tourism places in West Java Province. In the application of the A-STAR Algorithm, distance data and density data are used from each line segment in West Java Province. The heuristic values used are converted from density data. The A-STAR algorithm is implemented using Python so that the optimal route to tourism places in West Java Province is obtained.
Robust Coloring Optimization Model on Electricity Circuit Problems Viona Prisyella Balqis; Diah Chaerani; Herlina Napitupulu
Jambura Journal of Mathematics Vol 5, No 1: February 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4583.33 KB) | DOI: 10.34312/jjom.v5i1.16393

Abstract

The Graph Coloring Problem (GCP) is assigning different colors to certain elements in a graph based on certain constraints and using a minimum number of colors. GCP can be drawn into optimization problems, namely the problem of minimizing the color used together with the uncertainty in using the color used, so it can be assumed that there is an uncertainty in the number of colored vertices. One of the mathematical optimization techniques in dealing with uncertainty is Robust Optimization (RO) combined with computational tools. This article describes a robust GCP using the Polyhedral Uncertainty Theorem and model validation for electrical circuit problems. The form of an electrical circuit color chart consists of corners (components) and edges (wires or conductors). The results obtained are up to 3 colors for the optimization model for graph coloring problems and up to 5 colors for robust optimization models for graph coloring problems. The results obtained with robust optimization show more colors because the results contain uncertainty. When RO GCP is applied to an electrical circuit, the model is used to place the electrical components in the correct path so that the electrical components do not collide with each other.