Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Building of Informatics, Technology and Science

Penerapan Kombinasi Algoritma Sobel dan Canny (SoCan) dalam Identifikasi Citra Inversi Albatros Laysan Winanjaya, Riki; GS, Acmad Daengs; Anggraini, Fitri
Building of Informatics, Technology and Science (BITS) Vol 4 No 1 (2022): June 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1415.232 KB) | DOI: 10.47065/bits.v4i1.1660

Abstract

Utilizing an edge detection algorithm in an image will produce the edges of the image object. The aim is to mark the part that becomes the image's detail and correct the point of blurring of vision that occurs due to errors or the effects of the image acquisition process. This study aims to see the ability of the combination of Sobel and Canny edge detection algorithms (SoCan) to detect the inverted image. The image dataset used is the image of the Laysan Albatross, which consists of 10 original images and ten images that have been inverted based on the standard image dataset. The Laysan albatross is a large species of seabird found in the North Pacific. 99.7% of the total population is found in the Northwest Hawaiian Islands. The research dataset was obtained from the Caltech Vision Lab website http://www.vision.caltech.edu/datasets/cub_200_2011/ with dimensions of 500 x 271 pixels. Based on the analysis of 10 experiments carried out, the combination of the Sobel and Canny algorithm (SoCan) is not good at performing edge detection because it only has an average accuracy of 47.79% with an average accuracy error rate of 52.21%. Thus, in this case, the combination of the Sobel and Canny algorithms (SoCan) is not able to identify the Inversion Image
Optimisasi Fungsi Aktivasi pada Arsitektur LeNet untuk Meningkatkan Akurasi Klasifikasi Citra Tumor Otak Harliana, Harliana; Rahadjeng, Indra Riyana; Winanjaya, Riki
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.7108

Abstract

Brain hemorrhage is a critical medical condition that requires early and accurate detection to improve patient recovery outcomes. However, conventional image classification methods for brain hemorrhage still face limitations in terms of accuracy and efficiency. To address this issue, this study proposes optimizing the LeNet model using various activation functions—ReLU, Sigmoid, Tanh, and Swish—to enhance classification performance. Several optimization strategies were applied, including data augmentation techniques (flipping, rotation, shearing, rescaling) and fine-tuning of hyperparameters, to improve model generalization. Experimental results indicate that the model utilizing the Swish activation function achieves the most stable overall performance, with an accuracy of 55%, recall of 54%, precision of 54%, F1-score of 54%, and a ROC AUC value of 0.45. Although this performance is still below clinical application standards, the findings serve as an initial step toward exploring activation function optimization in CNN architectures. Further research is needed to significantly enhance classification accuracy and enable clinical viability.