Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Communication in Biomathematical Sciences

A new modified logistic growth model for empirical use Windarto, Windarto; Eridani, Eridani; Purwati, Utami Dyah
Communication in Biomathematical Sciences Vol 1, No 2 (2018)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (263.141 KB) | DOI: 10.5614/cbms.2018.1.2.5

Abstract

Richards model, Gompertz model, and logistic model are widely used to describe growth model of a population. The Richards growth model is a modification of the logistic growth model. In this paper, we present a new modified logistic growth model. The proposed model was derived from a modification of the classical logistic differential equation. From the solution of the differential equation, we present a new mathematical growth model so called a WEP-modified logistic growth model for describing growth function of a living organism. We also extend the proposed model into couple WEP-modified logistic growth model. We further simulated and verified the proposed model by using chicken weight data cited from the literature. It was found that the proposed model gave more accurate predicted results compared to Richard, Gompertz, and logistic model. Therefore the proposed model could be used as an alternative model to describe individual growth.
A new modified logistic growth model for empirical use Windarto Windarto; Eridani Eridani; Utami Dyah Purwati
Communication in Biomathematical Sciences Vol. 1 No. 2 (2018)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2018.1.2.5

Abstract

Richards model, Gompertz model, and logistic model are widely used to describe growth model of a population. The Richards growth model is a modification of the logistic growth model. In this paper, we present a new modified logistic growth model. The proposed model was derived from a modification of the classical logistic differential equation. From the solution of the differential equation, we present a new mathematical growth model so called a WEP-modified logistic growth model for describing growth function of a living organism. We also extend the proposed model into couple WEP-modified logistic growth model. We further simulated and verified the proposed model by using chicken weight data cited from the literature. It was found that the proposed model gave more accurate predicted results compared to Richard, Gompertz, and logistic model. Therefore the proposed model could be used as an alternative model to describe individual growth.