Articles
            
            
            
            
            
                            
                    
                        PENINGKATAN PROFESIONALITAS GURU DALAM PENYUSUNAN EVALUASI BERBASIS THINKING ANALYSIS BAGI GURU MATEMATIKA 
                    
                    Abdulloh Jaelani; 
Inna Kuswandari; 
Cicik Alfiniyah                    
                     Jurnal Penamas Adi Buana Vol 3 No 2 (2020): Januari 
                    
                    Publisher : LPPM Universitas PGRI Adi Buana Surabaya 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.36456/penamas.vol3.no2.a2221                            
                                            
                    
                        
                            
                            
                                
Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan kompetensi gurudalam menyusun instrumen evaluasi pembelajaran yang bermutu berbasis thinking analysis yaitupembuatan soal kategori High Order Thinking Skill (HOTS). Kegiatan ini diawali denganpelatihan penyusunan soal HOTS dengan peserta guru mata pelajaran matematika tingkat SMPyang tergabung dalam MGMP Matematika Kabupaten Jember sebanyak 56 orang. Kegiatanberikutnya adalah penyusunan soal oleh peserta didampingi oleh tim pelaksana pengmasdilanjutkan dengan proses telaah soal. Berdasarkan hasil pengabdian ini secara keseluruhanterlihat bahwa kemampuan guru dalam menyusun soal kategori HOTS masih perlu ditingkatkanbaik sisi penguasaan materi maupun teknis penyusunan soal yang baik. Kegiatan pelatihan inidiakhiri dengan evaluasi atas pelaksanaan kegiatan maupun hasil penyusunan soal oleh peserta.Evaluasi dilaksanakan terintegrasi dengan kegiatan rutin MGMP Matematika tingkat SMP diKabupaten Jember. Luaran kegiatan ini adalah laporan kegiatan, video kegiatan, serta bukukumpulan seluruh soal yang disusun peserta.
                            
                         
                     
                 
                
                            
                    
                        PENINGKATAN KETERAMPILAN GURU MATEMATIKA SMP DALAM PENGELOLAAN DISTANCE LEARNING 
                    
                    Abdulloh Jaelani; 
Damayanti, Auli; 
Alfiniyah, Cicik                    
                     Jurnal Abadimas Adi Buana Vol 5 No 02 (2022): Jurnal Abadimas Adi Buana 
                    
                    Publisher : LPPM Universitas PGRI Adi Buana Surabaya 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.36456/abadimas.v5.i02.a3976                            
                                            
                    
                        
                            
                            
                                
Pandemik Covid-19 yang terjadi pada tahun 2020 telah berdampak secara signifikan pada semua bidang, salah satunya bidang pendidikan. Guru tidak lagi bisa melakukan proses pembelajaran secara tatap muka di kelas. Oleh karena itu guru dituntut untuk dapat melakukan proses belajar mengajar secara daring. Pada kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan keterampilan guru dalam mengelola distance learning menggunakan Moodle. Rangkaian kegiatan diawali dengan proses instalasi moodle, proses perancangan pembelajaran, pembuatan konten, pembuatan forum interaksi, serta manajemen pengelolaan (desain, fitur, dan lain-lain) serta evaluasi. Peserta pengabdian kepada masyarakat ini adalah guru Matematika SMP yang tergabung dalam MGMP Matematika wilayah barat Kabupaten Jember sebanyak 30 orang dan semuanya dapat mengikuti pelatihan dari awal sampai akhir. Selain itu, peserta mampu membuat dan mengembangkan e-learning beserta kontennya menggunakan Moodle. Lebih lanjut diperolah peningkatan ketrampilan dan pengetahuan guru dalam mengelola distance learning menggunakan Moodle sebesar 33,09 %.
                            
                         
                     
                 
                
                            
                    
                        PELATIHAN DAN PENDAMPINGAN PEMBUATAN MEDIA PROMOSI BERBASIS TEKNOLOGI INFORMASI TERHADAP PRODUK-PRODUK UNGGULAN DAERAH DAN OBJEK WISATA DI KABUPATEN LAMONGAN 
                    
                    Cicik Alfiniyah; 
Nashrul Millah; 
Asri Bekti Pratiwi                    
                     Jurnal Penamas Adi Buana Vol 5 No 02 (2022): Jurnal Penamas Adi Buana 
                    
                    Publisher : LPPM Universitas PGRI Adi Buana Surabaya 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.36456/penamas.vol5.no02.a4311                            
                                            
                    
                        
                            
                            
                                
Salah satu sebab rendahnya perkembangan potensi ekonomi daerah adalah kurang tersebarnya informasi terkait produk-produk unggulan dan wisata alam daerah pada masyarakat luas. Hal ini yang mendasari dilakukannya program pengabdian kepada masyarakat di desa Kranji. Kegiatan yang dilakukan meliputi pelatihan dan pendampingan pembuatan website sebagai media promosi produk-produk unggulan dan wisata daerah berbasis teknologi informasi. Melalui kegiatan ini, diharapkan dapat membantu penyebaran informasi terkait potensi daerah sehingga meningkankan pendapatan masyarakat. Kegiatan ini dilakukan dalam empat tahapan, yaitu: koordinasi, pelatihan, pendampingan, dan evaluasi. Keberhasilan pelatihan dievaluasi dari nilai pretest dan posttest peserta yang menunjukkan adanya peningkatan sebesar 25%. Selain itu, didapatkan output berupa website yang telah dibuat oleh peserta berisikan potensi-potensi desa Kranji. Hasil evaluasi terhadap materi, narasumber, dan fasilitas pelatihan juga menunjukkan respon positif dari peserta dengan nilai 4,3 dari skala 5.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan dan Kontrol Optimal Model Matematika Penyebaran Penyakit Ebola dengan Penanganan Medis 
                    
                    Sofita Suherman; 
Fatmawati Fatmawati; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 1 No. 1 (2019) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (438.795 KB)
                            
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v1i1.14772                            
                                            
                    
                        
                            
                            
                                
Ebola disease is one of an infectious disease caused by a virus. Ebola disease can be transmitted through direct contact with Ebola’s patient, infected medical equipment, and contact with the deceased individual. The purpose of this paper is to analyze the stability of equilibriums and to apply the optimal control of treatment on the mathematical model of the spread of Ebola with medical treatment. Model without control has two equilibria, namely non-endemic equilibrium (E0) and endemic equilibrium (E1) The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is locally asymptotically stable if  R0 < 1 and endemic equilibrium tend to asymptotically stable if R0 >1 . The problem of optimal control is then solved by Pontryagin’s Maximum Principle. From the numerical simulation result, it is found that the control is effective to minimize the number of the infected human population and the number of the infected human with medical treatment population compare without control.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan Model Matematika Ko-infeksi Virus Influenza A dan Pneumokokus pada Sel Inang 
                    
                    Abdul Faliq Anwar; 
Windarto Windarto; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 1 No. 2 (2019) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (780.616 KB)
                            
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v1i2.17385                            
                                            
                    
                        
                            
                            
                                
Co-infection of influenza A virus and pneumococcus is caused by influenza A virus and pneumococcus bacteria which infected host cell at the same time. The purpose of this thesis is to analyze stability of equilibrium point on mathematical model within-host co-infection of influenza A and pneumococcus. Based on anlytical result of the model there are four quilibrium points, non endemic co-infection equilibrium (E0), endemic influenza A virus equilibrium (E1), endemic pneumococcus equilbrium (E2) and endemic co-infection equilibrium (E3). By Next Generation Matrix (NGM), we obtain two basic reproduction number, which are basic reproduction number for influenza A virus (R0v) and basic reproduction number for pneumococcus (R0b). Existence of equilibrium point and local stability of equilibrium point dependent on basic reproduction number. Non endemic co-infection equilibrium is locally asymtotically stable if R0v < 1 and R0b < 1; influenza A virus endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1; pneumococcus endemic equilibrium is locally asymtotically stable if R0v < 1 and R0b > 1. Meanwhile, the co-infection endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1. From the numerical simulation result, it was shown that increasing the number of influenza A virus and pneumococcus made the number of population cell infected by influenza A virus and pneumococcus (co-infection) also increased.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan dan Kontrol Optimal Model Matematika Dinamika Pelanggan Berdasarkan Kebijakan Pemasaran 
                    
                    Muhammad Iqbal Abdi Farchan; 
Fatmawati Fatmawati; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 2 No. 1 (2020) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                    |
                            
                            
                                Full PDF (706.178 KB)
                            
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v2i1.19300                            
                                            
                    
                        
                            
                            
                                
Customer dynamics include the exchange of information and ongoing transactions between customers and the organization. This process has an important role in the company to run its business, so that the number of customers increase. To achieve this, many things are done by the company. One of the strategies is product advertising by word of mouth. The purpose of this thesis is to analyze the stability of equilibrium point and to apply the optimal control word of mouth advertising on mathematics model of the customer dynamics based on marketing policy. Mathematics model of the customer dynamics based on marketing policy without control has two equilibrium points, namely non – endemic equilibrium (E0) and endemic equilibrium (E1). Local stability of equilibrium and the existence of endemic equilibrium depends on basic reproduction number (R0). The non – endemic equilibrium tend to asymptotically stable if R0 < 1.  The problem of optimal control is solved by Pontryagin’s Maximum Principle. The simulation results show that the total number of referral and regular customer populations that are given control in the form of word of mouth advertising efforts at the end of the observation are 312 and 18470 with the control effort costs occurred in 1798364.63. While the total number of referral and regular customer populations that are not given control in the form of word of mouth advertising efforts at the end observation are 241 and 17260. Based on these results show that word of mouth advertising efforts have an effect to increase the number of referral and regular customer in accordance with the aim of providing optimal control.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan Model Matematika Penyebaran Penyakit Schistosomiasis dengan Saturated Incidence Rate 
                    
                    Elda Widya; 
Miswanto Miswanto; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 2 No. 2 (2020) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v2i2.23851                            
                                            
                    
                        
                            
                            
                                
Schistosomiasis is a disease caused by infections of the genus Schistosoma. Schistosomiasis can be transmitted through schistosoma worms that contact human skin. Schistosomiasis is a disease that continues to increase in spread. Saturated incidence rates pay attention to the ability to infect a disease that is limited by an increase in the infected population. This thesis formulates and analyzes a mathematical model of the distribution of schistosomiasis with a saturated incidence rate. Based on the analysis of the model, two equilibrium points are obtained, namely non-endemic equilibrium points (E0) and endemic equilibrium points (E1). Both equilibrium points are conditional asymptotically stable. The nonendemic equilibrium point will be asymptotically stable if rh > dh, rs > ds and R0 < 1, while the endemic equilibrium point will be asymptotically stable if R0 > 1. Sensitivity analysis shows that there are parameters that affect the spread of the disease. Based on numerical simulation results show that when R0 < 1, the number of infected human populations (Hi), the number of infected snail populations (Si), the amount of cercaria density (C) and the amount of miracidia density (M) will tend to decrease until finally extinct. Otherwise at the time R0 > 1, the number of the four populations tends to increase before finally being in a constant state.
                            
                         
                     
                 
                
                            
                    
                        Analisis dan Strategi Pengendalian Model Matematika Interaksi Sel Kanker Leukemia Mielositik Kronis dan Sel Imunitas 
                    
                    Nanda Amalia Rahma; 
Cicik Alfiniyah; 
Windarto Windarto                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 2 No. 2 (2020) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v2i2.23853                            
                                            
                    
                        
                            
                            
                                
Leukemia is a disease in the classification of cancer in the blood that is characterized by abnormal growth of blood cells in the bone marrow or lymphoid tissue, and generally occurs in leukocytes or white blood cells. White blood cells that look for types of pathogenic diseases that harm the human body and then damage it are the task of the immune system. This thesis analyzes the mathematical model of chronic myelocytic leukemia cancer cell interactions and immune cells to determine the rate of increase in the population of chronic myelocytic leukemia cancer cells to the effect of immune cells. Based on the analysis of the model obtained two equilibrium points namely the equilibrium point of the extinction of chronic myelocytic leukemia cancer cells (E0) and the equilibrium point of the coexistence of chronic myelocytic leukemia cancer cells (E1). The equilibrium point of extinction will be asymptotically stable, whereas the equilibrium point of coexistence tends to be asymptotically stable using phase fields with the help of MATLAB software. Numerical simulation results show that there is an increase in the number of chronic myelocytic leukemia cancer cell populations and a decrease in the number of vulnerable blood cell populations. When immune cells increase in population, chronic myelocytic leukemia in cancer cells decreases in population but is not significant.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan dan Kontrol Optimal Model Matematika Partisipasi Pemilih pada Pemilihan Umum dengan Saturated Incidence Rate 
                    
                    Dinda Ariska Putri; 
Windarto Windarto; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 3 No. 1 (2021) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v3i1.26939                            
                                            
                    
                        
                            
                            
                                
Voter participation in general elections is an important aspect of a democratic state structure. Participation is determined by the level of public political awareness, if the level of public political awareness is low, voter participation tends to be passive (Abstinence). A mathematical model approach to voter participation in elections that has been modified to a saturated incidence rate is needed to predict voter participation in future elections. This thesis aims to analyze the stability of the equilibrium point and apply the optimal control variable in the form of an awareness campaign. In the model without control variables, we obtain two equilibriums, namely, the non-endemic equilibrium and the endemic equilibrium. Local stability and the existence of endemic equilibrium depend on the basic reproduction number (R0), where R0=bL/(g+m)m. There is voter participation in elections when R0 < 1 and the absence of voter participation in elections when R0 > 1. We also analyze the sensitivity of parameters to determine which parameters are the most influential in this mathematical model. Furthermore, the application of control variables in the mathematical model of voter participation in elections with saturated incidence rate is determined through the Pontryagin Maximum Principle method. Numerical simulation results show that providing control variables in the form of awareness campaign it is quite effective in minimize the number of the voting population who abstained from election.
                            
                         
                     
                 
                
                            
                    
                        Analisis Kestabilan Model Predator-Prey dengan Adanya Faktor Tempat Persembunyian Menggunakan Fungsi Respon Holling Tipe III 
                    
                    Riris Nur Patria Putri; 
Windarto Windarto; 
Cicik Alfiniyah                    
                     Contemporary Mathematics and Applications (ConMathA) Vol. 3 No. 2 (2021) 
                    
                    Publisher : Universitas Airlangga 
                    
                         Show Abstract
                        | 
                             Download Original
                        
                        | 
                            
                                Original Source
                            
                        
                        | 
                            
                                Check in Google Scholar
                            
                        
                                                                                    
                            | 
                                DOI: 10.20473/conmatha.v3i2.30493                            
                                            
                    
                        
                            
                            
                                
Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.