Claim Missing Document
Check
Articles

Found 13 Documents
Search

The Application of The Steepest Gradient Descent for Control Design of Dubins Car for Tracking a Desired Path Miswanto, Miswanto; Pranoto, I.; Muhammad, H; Mahayana, D
Limits: Journal of Mathematics and Its Applications Vol 4, No 1 (2007)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (227.887 KB) | DOI: 10.12962/j1829605X.v4i1.1404

Abstract

In this paper, we consider the control design of the Dubins car system to track a desired path. We design the control of the Dubins car system using optimal control approach. The control of the Dubins car system is designed for tracking the desired path. Instead of the usual quadratic cost function, a special type of cost functional which includes a tracking error term will be considered. By this special cost functional, the minimum tracking error of path of the Dubins car toward a desired path using Pontryagin Maximum Principle is obtained. The analytical solution of the Hamiltonian system is di±cult to obtain. So, a numerical solution with the steepest gradient descent method is proposed. The numerical results are given at the last section of this paper.
Analisis Perilaku Model Multi Agen dengan Gangguan Achmadi, Sentot; Miswanto, Miswanto
CAUCHY Vol 2, No 4 (2013): CAUCHY
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1057.731 KB) | DOI: 10.18860/ca.v2i4.3114

Abstract

This paper discuss multi-agent model of the N-dimensional space with the function of attraction and repulsion. In this model is given the disturbance function which is a bounded function. In this paper also discuss about stationary of each agency and stability of the models use stability of Lyapunov. From the analytical results obtained center of the multi-agent is stationary. Also test the stability with Lyapunov method is obtained that the proposed model is a stable model. Numerical simulation results show that each agent will converges to a region that has a certain distance to the center of the multi-agent model
A Hybrid Tabu Search and Genetic Algorithm Imputation Approach for Incomplete Data Khusnul Khotimah, Bain; Kustiyahningsih, Yeni; Miswanto, Miswanto
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 4, November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i4.1340

Abstract

The common problem for data collection is happening missing value during the data collection and processing process that the quality of the data testing is decreased. A computational based technique for dealing with missing values, namely Genetic Algorithm Imputation (GAI). The usage was used to estimate the dataset's missing values. GAI generates the optimal set of missing values with the acquisition of information as a function of fitness to measure individual solutions' performance. GAI conducts continuous searching until the missing criteria value is found according to best fitness. So, it is trapped in optimal conditions temporarily. The improvement of GAI with tabu search is known as TS-GAI, that strength is two metaheuristic techniques modified at the mutase stage to distract the local optima's search. In applying missing values, this technique works better when many possible values are used instead of the mixed attribute having missing values. Because the new generation chromosome values generate many opportunities to make up for the missing values. The experimental results show that the TS-GAI shows better performance on 30% MV with a fitness value of 0.212. It converges at 159 iterations. Generally, TS-GAI is a faster iteration than simple GAI and it has a lower RMSE level than other imputation techniques.
The Control Design of Ship Formation with the Presence of a Leader M. Miswanto; I. Pranoto; H. Muhammad Mhammad; D. Mahayana
IAES International Journal of Robotics and Automation (IJRA) Vol 4, No 1: March 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (218.658 KB) | DOI: 10.11591/ijra.v4i1.pp53-62

Abstract

Formation control is an important behavior for multi-agents system (swarm). This paper addresses the optimal tracking control problem for swarm whose agents are ships moving together in a specific geometry formation. We study formation control of the swarm model which consists of three agents and one agent has a role as a leader. The agents of swarm are moving to follow the leader path. First, we design the control of the leader with Pontryagin Maximum Principle. The control of the leader is designed for tracking the desired path. We show that the tracking error of the path of the leader tracing a desired path is sufficiently small. After that, geometry approach is used to design the control of the other. We show that the positioning and the orientation of each agent can be controlled dependent on the leader. The simulation results show to illustrate of this method at the last section of this paper.
Analisis Kestabilan Model Matematika Penyebaran Penyakit Schistosomiasis dengan Saturated Incidence Rate Elda Widya; Miswanto Miswanto; Cicik Alfiniyah
Contemporary Mathematics and Applications (ConMathA) Vol. 2 No. 2 (2020)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v2i2.23851

Abstract

Schistosomiasis is a disease caused by infections of the genus Schistosoma. Schistosomiasis can be transmitted through schistosoma worms that contact human skin. Schistosomiasis is a disease that continues to increase in spread. Saturated incidence rates pay attention to the ability to infect a disease that is limited by an increase in the infected population. This thesis formulates and analyzes a mathematical model of the distribution of schistosomiasis with a saturated incidence rate. Based on the analysis of the model, two equilibrium points are obtained, namely non-endemic equilibrium points (E0) and endemic equilibrium points (E1). Both equilibrium points are conditional asymptotically stable. The nonendemic equilibrium point will be asymptotically stable if rh > dh, rs > ds and R0 < 1, while the endemic equilibrium point will be asymptotically stable if R0 > 1. Sensitivity analysis shows that there are parameters that affect the spread of the disease. Based on numerical simulation results show that when R0 < 1, the number of infected human populations (Hi), the number of infected snail populations (Si), the amount of cercaria density (C) and the amount of miracidia density (M) will tend to decrease until finally extinct. Otherwise at the time R0 > 1, the number of the four populations tends to increase before finally being in a constant state.
Analisis Kestabilan Model Matematika Predator-Prey pada Dinamika Sosial Laurensia Regina Bestari Gepak; Miswanto Miswanto; Cicik Alfiniyah
Contemporary Mathematics and Applications (ConMathA) Vol. 4 No. 1 (2022)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v4i1.34147

Abstract

In social life, difference and diversity is something that cannot be denied by anyone. Starting from differences horizontally concerning ethnicity, language, customs to religion and vertically concerning the political, social, cultural to economic fields. The existence of these many differences can certainly bring positive and negative impacts in social life. With diversity, interaction in society is dynamic, but it results in the emergence of negative attitudes such as egoism and competition between groups. From the occurrence of this can trigger the problem of social inequality in the community. Social inequality can occur because of national development efforts that only focus on economic aspects and forget about social aspects. The purpose of this thesis is to discuss the stability analysis of the predator-prey mathematical model on social dynamics with the Holling type II functional response. From this model analysis, we obtained four equilibrium points, which are the equilibrium point for the extinction of all population (E0) which is unstable, then the equilibrium point for the extinction of the non-poor population and the poor (E1) and the extinction of the non-poor population (E2) which are stable with certain conditions and coexistence (E3) which is to be asymptotically stable. Also in the final section, we perform the numerical simulation to supports the analytical result.
Model Matematika Persaingan Dua Spesies dengan Toksisitas dan Pemanenan Selektif Puja Nur Audria; Miswanto Miswanto; Fatmawati Fatmawati
Limits: Journal of Mathematics and Its Applications Vol 16, No 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v16i2.5255

Abstract

Persaingan merupakan interaksi biologi antar makhluk hidup untuk bersaing mendapatkan sumber energi yang terbatas, misalnya makanan yang dibutuhkan untuk tumbuh dan bertahan hidup. Beberapa spesies mempunyai strategi tersendiri dalam bersaing, diantaranya adalah kemampuan mengeluarkan racun. Pada jurnal ini, dikaji dua model predator-prey yang dipengaruhi oleh adanya toksisitas dan pemanenan selektif. Model pertama mengkaji model persaingan dua spesies dengan adanya toksisitas dan pemanenan selektif, sedangkan model kedua mengkaji model persaingan dua spesies dengan adanya toksisitas dan pemanenan selektif dengan Holling tipe III. Dari model pertama diperoleh 4 titik setimbang yaitu dan  Dari model kedua juga diperoleh 4 titik setimbang, yaitu dan . Titik setimbang  dan  tidak stabil, sedangkan , dan  stabil dalam kondisi tertentu. Hasil simulasi numerik menunjukkan bahwa kedua spesies pada model kedua mengalami peningkatan dibandingkan dengan model pertama. Hal tersebut dikarenakan adanya kecenderungan untuk mencari musuh yang lain ketika jumlah musuh mulai berkurang
Analisis Model Matematika Orde Fraksional Penyebaran Worm Berbasis Wi-Fi Pada Smartphone Mohammad Imam Utoyo; Er Ayu Nurafifah; Miswanto Miswanto
Limits: Journal of Mathematics and Its Applications Vol 15, No 2 (2018)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.752 KB) | DOI: 10.12962/limits.v15i2.4304

Abstract

Worm merupakan suatu program atau software (perangkat lunak) yang memiliki kemampuan mereplikasi diri dan dapat menyebabkan kerusakan pada jaringan komputer. Pada umumnya worm menginfeksi jaringan komputer, namun seiring dengan perkembangan teknologi menyebabkan munculnya worm jenis baru yaitu worm berbasis Wi-Fi (Wireless Fidelity) yang dapat menginfeksi smartphone. Salah satu upaya penanggulangan worm adalah dengan menambahkan sebuah node baru pada jaringan Wi-Fi yaitu node karantina untuk meminimalisir penyebaran worm pada smartphone. Model matematika penyebaran worm berbasis Wi-Fi  pada smartphone dapat digunakan untuk mengetahui dinamika penyebaran worm. Melalui dinamika penyebaran worm, dapat dipelajari faktor penghambat infeksi worm. Pada penelitian ini dilakukan analisis kestabilan titik setimbang model matematika orde fraksional penyebaran worm berbasis Wi-Fi pada smartphone dengan orde turunan fraksional α∈(0,1].  Berdasarkan analisis model, diperoleh dua titik setimbang yaitu titik setimbang bebas worm〖  P〗_0 dan titik setimbang endemik 〖 P〗_1. Titik setimbang bebas worm stabil asimtotis lokal jika basic reproduction number R_0<1, sedangkan titik setimbang endemik stabil asimtotis lokal jika basic reproduction number R_0>1.  Kemudian dilakukan analisis sensitivitas dan simulasi numerik dengan variasi nilai orde fraksional α untuk mengetahui dinamika penyebaran worm berbasis Wi-Fi pada smartphone. Berdasarkan hasil simulasi numerik diperoleh hasil bahwa penambahan node karantina pada jaringan Wi-Fi dapat menurunkan populasi node terinfeksi dan meningkatkan populasi node yang pulih.
Analisis Kestabilan dan Kontrol Optimum pada Model Penyebaran Penyakit Influenza dengan Adanya Populasi Cross-Immune Bertha Aurellia Pamudya Fajar; Miswanto; Windarto
Contemporary Mathematics and Applications (ConMathA) Vol. 4 No. 2 (2022)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v4i2.39168

Abstract

Influenza is a respiratory tract infection known as flu. Caused by an RNA virus from Orthomyxoviridae family. This thesis aims to analyze the stability of the equilibrium point in the mathematical model of influenza transmission with Cross-Immune population and applying optimal control variables in the form of prevention and treatment. In this mathematical model of influenza transmission with Cross-Immune population, we obtain two equilibriums namely, the non- endemic equilibrium and the endemic equilibrium. Local stability and the existence of endemic equilibrium depend on the basic reproduction number (R0). The spread of influenza does not occur in the population when R0 < 1 and the spread of influenza persist in the population when R0 > 1. Furthermore, the problem of control variables in the mathematical model of influenza transmission is determined through the Pontryagin Maximum Principle method. The numerical simulation results show that treatment efforts are more effective in suppressing the spread of influenza disease than prevention efforts. However, giving control variables in the form of prevention and treatment at the same time is very effective in minimizing the number of human populations expose to and infected with influenza.
Pembuatan Sistem Informasi Desa (SID) untuk Menunjang Pelayanan di Desa Klangon, Madiun: Village Information System Set Up in Klangon Village, Madiun, to Support Services Nashrul Millah; Miswanto Miswanto; Cicik Alfiniyah
PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat Vol. 8 No. 1 (2023): PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat
Publisher : Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33084/pengabdianmu.v8i1.4160

Abstract

The quality of village services provided to the community can be raised with the implementation of an effective information system. Klangon Village, Saradan District, Madiun Regency, is the program's partner. Due to a lack of information system management skills, the Village Information System has not been implemented in an ideal manner.An alternative solution offered is to provide training and assistance to local government staff in Klangon village to develop and manage Information Systems. The process starts with a partner survey to identify the underlying causes of the issue at hand, followed by training, mentorship, and program evaluation. The outcomes of this civic engagement project include the creation of a website serving as the village's information system and an improvement in the village of Klangon's capacity to maintain it.