Claim Missing Document
Check
Articles

Found 9 Documents
Search

COMPARISON OF CLASSIFICATION ALGORITHMS FOR ANALYSIS SENTIMENT OF FORMULA E IMPLEMENTATION IN INDONESIA Fachri Amsury; Nanang Ruhyana; Tati Mardiana
Jurnal Riset Informatika Vol 4 No 3 (2022): Period of June 2022
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.443 KB) | DOI: 10.34288/jri.v4i3.400

Abstract

The Formula E racing series has become one of the world's most prestigious competitions. In 2022, Indonesia hosted the famous Formula E race. The event possesses the potential for economic benefits for Indonesia worth 78 million euros through the arrival of 35,000 spectators. Indonesians are enthusiastic about Formula E since it allows their nation to encourage tourists and gain international prominence. However, some people do not support this event. Since they regard that amid the COVID-19 pandemic, it is preferable for the government to focus on people affected by the pandemic rather than support a Formula E event. This study compares the Support Vector Machine and Naive Bayes algorithms in classifying public opinion in the Formula E race. This study gets its information from user comments on social media platforms, especially Twitter. The stages start with text preprocessing and include cleaning, case folding, tokenization, filtering, and stemming. Proceed with weighting using the TF-IDF approach. Data testing uses a confusion matrix to evaluate the classification results by testing accuracy, precision, and recall. Categorizing public opinion using the SVM algorithm has an accuracy of 82 percent, a precision of 97.86 percent, and a recall of 77.90 percent. On the other hand, the accuracy of the Naive Bayes technique is more limited, at 87.54 percent. Society's opinion on Twitter shows positive sentiment towards implementing Formula E.
Pelatihan Mengolah Data Survey Dengan Microsoft Excel Pada Lembaga Muslimah Wahdah Islamiyah Setiaji Setiaji; Tati Mardiana; Ani Oktarini Sari; Muhammad Ifan Rifani Ihsan
Jurnal Pengabdian Kreatif Cemerlang Indonesia Vol 1 No 1 (2022): Periode Mei
Publisher : Yayasan Kreatif Cemerlang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (882.351 KB)

Abstract

Lembaga Muslimah Wahdah Islamiyah merupakan bagian dari DPP Wahdah Islamiyah Jakarta. Yang lingkup program kerjanya fokus pada pengembangan diri para muslimah dan penyelenggaraan kegiatan sosial bagi masyarakat umum. Untuk membuat pemetaan jadwal dan kegiatan atau untuk mengetahui tingkat keberhasilan pendidikan yang dilakukan oleh lembaga muslimah WI masih belum terbiasa menggunakan kuesioner ataupun pembuatan dan pengolahan data survey mengenai kegiatan yang telah dilakukan. Untuk itu kegiatan pengabdian masyarakat yang dilakukan oleh Dosen Fakultas Teknologi Informasi memberikan Pelatihan Mengolah Data Survey Dengan Microsoft Excel Pada Lembaga Muslimah Wahdah Islamiyah. Metode yang digunakan dalam kegiatan pengabdian masyarakat ini berupa pelatihan interaktif dalam penyampaian teori, sedangkan untuk metode praktikumnya menggunakan metode simulasi dengan menggunakan fungsi statistik microsoft excel dan tanya jawab. Pelatihan ini diharapkan dapat meningkatkan anggota Wahdah Islamiyah dalam mengelola data, pemanfaatan data dan memanfaatkan fitur Microsoft Excel yang telah disediakan sehingga akan terbentuk pemuda dan pengurus yang mahir dilingkungan organisasi
Pelatihan Pengolahan Data dan Penyajian Data Dengan Media Infografis Pada JPRMI Jakarta Selatan Ani Oktarini Sari; Setiaji Setiaji; Tati Mardiana; M. Ifan Rifani Ihsan
Jurnal Pengabdian Kreatif Cemerlang Indonesia Vol 1 No 2 (2022): Periode November
Publisher : Yayasan Kreatif Cemerlang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (813.271 KB)

Abstract

Tren penyajian data dengan menyajikan tampilan data yang menarik belum diterapkan di Jaringan Pemuda dan Remaja Masjid (JPRMI) DKI Jakarta. Padahal penyajian data yang baik secara visual dapat memberikan pemahaman bagi audience. Oleh karena itu Universitas Nusa Mandiri melaksanakan Pengabdian Masyarakat berupa Pelatihan Pengolahan dan Penyajian data dengan media Infografis di Pemuda dan Remaja Masjid (JPRMI) DKI Jakarta. Metode yang digunakan dalam kegiatan pengabdian masyarakat ini berupa pelatihan interaktif dalam penyampaian teori, sedangkan untuk metode praktikumnya menggunakan metode simulasi dan tanya jawab. Dengan pelatihan tersebut, dapat membantu para Pemuda dan Remaja Masjid (JPRMI) DKI Jakarta dalam mengolah dan menampilkan data secara visual.
Pemanfaatan Google Form Sebagai Media Pengumpulan dan Pengolahan Data pada Kader PKK Kelurahan Ragunan Jakarta Ani Oktarini Sari; Setiaji Setiaji; Muhammad Ifan Rifani; Tati Mardiana
Jurnal Aruna Mengabdi Vol. 1 No. 1 (2023): Periode Mei 2023
Publisher : Lotus Aruna Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61398/armi.v1i1.10

Abstract

Google Form adalah platform unik yang dikembangkan oleh Google yang dimaksudkan untuk menyediakan layanan formulir melalui internet. Anda dapat mengelola dan menganalisis survei dengan benar dan mendapatkan hasil instan yang tepat dengan menggunakan Google Form. Teknik pengumpulan dan pengelolaan data dengan menggunakan Google Form belum diterapkan di Kader Pemberdayaan Kesejahteraan Keluarga (PKK) Kelurahan Ragunan Jakarta Selatan. Padahal pengumpulan dan pengelolaan data yang baik dapat memberikan hasil evaluasi dan penilaian yang baik pula. Kegiatan pengabdian masyarakat ini menggunakan pelatihan interaktif dalam penyampaian teori; metode praktikumnya menggunakan simulasi dan tanya jawab. Diharapkan dengan adanya pelatihan ini dapat menambah wawasan para kader untuk penggunaan Google Form dalam kegiatan PKK di kelurahan Ragunan.
Implementation of the Saw Method to Discover the Optimum Internet Service Recommendations for Online Gaming Gunawan Gunawan; Ita Yulianti; Ami Rahmawati; Tati Mardiana; Nanang Ruhyana
Jurnal Riset Informatika Vol 5 No 3 (2023): Priode of June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v5i3.547

Abstract

Currently, the development and use of the Internet have a more complex function so that it can change the paradigm of people's lives, including in aspects of entertainment, especially games. With the rise of numerous ISPs in Indonesia, different internet service packages are now available, particularly for gamers, such as Indihome, Biznet, First Media, and My Republic. The variety of services makes it difficult for users to choose an internet package that suits their needs. Therefore, this research aims to build a decision support system that can facilitate users in choosing the ideal internet service for gamers based on five criteria: quota, network speed, connection, cost, and the number of users using the SAW method. The data collection methods used are observation, questionnaires, and interviews. The research results obtained from data processing using the SAW method through Microsoft Excel are then implemented into a website-based program. With this program, it is hoped that it can be a tool for users in determining the service package to be purchased.
CLASSIFICATION OF STUDENT SATISFACTION WITH ONLINE LECTURE Nanang Ruhyana; Tati Mardiana; Fachri Amsury; Daning Nur Sulistyowati
Jurnal Riset Informatika Vol. 4 No. 1 (2021): December 2021
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1171.987 KB) | DOI: 10.34288/jri.v4i1.144

Abstract

Abstra Covid-19 has had a significant impact on people's lives, resulting in the paralysis of almost the entire economy and education, especially in the education sector, resulting in many students being unable to carry out teaching and learning activities at schools or universities. Based on this, the Ministry of Education and Culture has issued an appeal to stop face-to-face teaching and learning activities at schools and universities and replace them with distance or online learning. Resulting in teaching and learning activities to be less than optimal for students or students, there is dissatisfaction with the distance or online learning system, the purpose of this study is to measure the level of student satisfaction with online lectures by applying data mining techniques, classifying the level of online learning satisfaction using an online learning approach. k-NN algorithm and Decision Tree with 100 questionnaire data that has been collected from active students who carry out online lectures with an accuracy rate of 96.00% from the k-NN algorithm and a satisfied precision value of 95.51%, a satisfied recall value of 98.84% on a precision value the dissatisfied class is 90.91%, the recall value of the dissatisfied class is 71.43%. While the accuracy results using the Decision Tree algorithm approach is lower with an accuracy of 95.00%. based on research results that the level of student satisfaction with distance learning or online is quite high.
THE EFFECTIVENESS ANALYSIS OF RANDOM FOREST ALGORITHMS WITH SMOTE TECHNIQUE IN PREDICTING LUNG CANCER RISK Ita Yulianti; Ami Rahmawati; Tati Mardiana
Jurnal Riset Informatika Vol. 4 No. 2 (2022): March 2022
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (996.334 KB) | DOI: 10.34288/jri.v4i2.159

Abstract

Abstract When compared with other types of cancer, most of the population with cancer die from lung cancer.A person needs to do a screening test through X-rays, CT scans, and MRI to detect the disease. However, before carrying out the process, the doctor will ordinarily investigate a medical history and physical examination first to study the symptoms and possible risk factors for lung cancer. The lung cancer data set has a class imbalance that affects the performance of the random forest algorithm in predicting the risk of lung cancer. This study aims to employ the SMOTE technique to the random forest algorithm to increase accuracy in predicting lung cancer risk. In this research, data processing and analysis use the Python programming language. The test results show an accuracy value of 88% with an AUC value of 0.93. When employing the random forest method to forecast lung cancer risk, the SMOTE technique is useful in dealing with class imbalances in the data set.
COMPARISON OF CLASSIFICATION ALGORITHMS FOR ANALYSIS SENTIMENT OF FORMULA E IMPLEMENTATION IN INDONESIA Fachri Amsury; Nanang Ruhyana; Tati Mardiana
Jurnal Riset Informatika Vol. 4 No. 3 (2022): June 2022
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (981.562 KB) | DOI: 10.34288/jri.v4i3.187

Abstract

The Formula E racing series has become one of the world's most prestigious competitions. In 2022, Indonesia hosted the famous Formula E race. The event possesses the potential for economic benefits for Indonesia worth 78 million euros through the arrival of 35,000 spectators. Indonesians are enthusiastic about Formula E since it allows their nation to encourage tourists and gain international prominence. However, some people do not support this event. Since they regard that amid the COVID-19 pandemic, it is preferable for the government to focus on people affected by the pandemic rather than support a Formula E event. This study compares the Support Vector Machine and Naive Bayes algorithms in classifying public opinion in the Formula E race. This study gets its information from user comments on social media platforms, especially Twitter. The stages start with text preprocessing and include cleaning, case folding, tokenization, filtering, and stemming. Proceed with weighting using the TF-IDF approach. Data testing uses a confusion matrix to evaluate the classification results by testing accuracy, precision, and recall. Categorizing public opinion using the SVM algorithm has an accuracy of 82 percent, a precision of 97.86 percent, and a recall of 77.90 percent. On the other hand, the accuracy of the Naive Bayes technique is more limited, at 87.54 percent. Society's opinion on Twitter shows positive sentiment towards implementing Formula E.
Implementation of the Saw Method to Discover the Optimum Internet Service Recommendations for Online Gaming Gunawan Gunawan; Ita Yulianti; Ami Rahmawati; Tati Mardiana; Nanang Ruhyana
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (759.546 KB) | DOI: 10.34288/jri.v5i3.232

Abstract

Currently, the development and use of the Internet have a more complex function so that it can change the paradigm of people's lives, including in aspects of entertainment, especially games. With the rise of numerous ISPs in Indonesia, different internet service packages are now available, particularly for gamers, such as Indihome, Biznet, First Media, and My Republic. The variety of services makes it difficult for users to choose an internet package that suits their needs. Therefore, this research aims to build a decision support system that can facilitate users in choosing the ideal internet service for gamers based on five criteria: quota, network speed, connection, cost, and the number of users using the SAW method. The data collection methods used are observation, questionnaires, and interviews. The research results obtained from data processing using the SAW method through Microsoft Excel are then implemented into a website-based program. With this program, it is hoped that it can be a tool for users in determining the service package to be purchased.