Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Information System, Applied, Management, Accounting and Research

Pengaruh atribut produk dan customer relationship marketing terhadap harga Sussy Susanti; Henny Utarsih
JISAMAR (Journal of Information System, Applied, Management, Accounting and Research) Vol 6 No 4 (2022): JISAMAR : November 2022
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisamar.v6i4.943

Abstract

Penelitian ini bertujuan untuk mengetahui dan menganalisis pengaruh Atribut Produk dan Customer Relationship Marketing terhadap Harga sepatu di Objek Wisata Belanja Sepatu Cibaduyut Bandung, Jawa Barat. Metode penelitian yang digunakan dalam penelitian ini adalah deskriptif dan verifikatif. Penelitian ini menggunakan Structural Equation Modeling dengan pendekatan Partial Least Square untuk menganalisis data. Analisis data dilakukan dengan menggunakan Software SmartPLS versi 3.0. Pengujian hipotesis dalam penelitian ini dilakukan terhadap outer model (model pengukuran) dan inner model (model struktural). Berdasarkan hasil penelitian menunjukkan bahwa Atribut Produk dan Customer Relationship Marketing memiliki pengaruh positif yang signifikan terhadap Harga produk sepatu cibaduyut. Hal itu menunjukkan bahwa semakin baik Atribut Produk dan Customer Relationship Marketing dimata wisatawan maka akan semakin tinggi daya beli produk tersebut. Saran yang diberikan untuk pelaku usaha kecil dan menengah adalah membuat desain produk yang up to date, memanfaatkan media sosial untuk promosi dan menciptakan harga yang kompetitif
Model Prediksi Harga Saham BJBR Menggunakan Long Short-Term Memory (LSTM) untuk Mendukung Keputusan Investasi Susanti, Sussy; Kuraesin, Aneu
Journal of Information System, Applied, Management, Accounting and Research Vol 9 No 3 (2025): JISAMAR (Journal of Information System, Applied, Management, Accounting and Resea
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisamar.v9i3.2047

Abstract

Stocks are one of the most popular investment instruments among the public due to their potential for long-term returns through price appreciation and dividend distributions; however, stock price movements are heavily influenced by various factors such as macroeconomic conditions, market sentiment, and corporate actions, making accurate forecasting essential for investors to minimize risk and maximize profit. PT Bank BJB Tbk (ticker code: BJBR), a major bank in Indonesia that operates both conventional and Sharia-based services, has shown high volatility over the past few. Therefore, this research aims to develop a stock price prediction model for BJBR using the Long Short-Term Memory (LSTM) approach, a variant of Recurrent Neural Networks (RNN) well-suited for time series data. Historical closing price data from January 2020 to June 2025 were collected, preprocessed through normalization, dataset division, and transformation into supervised learning format, and then used to train an LSTM model with a two-layer architecture and dropout layers to prevent overfitting. The model was trained using the Adam optimizer and evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²). Evaluation results showed that the model achieved a high level of accuracy, with an R² value of 0.9643 on the test data, while visualizations of predicted versus actual prices demonstrated a strong alignment, proving that the LSTM model is effective in capturing temporal patterns in financial time series data and can serve as a valuable tool for data-driven investment decision-making.