Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : IPTEK The Journal for Technology and Science

Engineering Design of A Gang Drilling Machine Equipped with Jig and Fixtures to Make A Prototype Machine in Birdcage Production Widiyono, Eddy; Winarto, Winarto; Wardhani, Rivai; Rusdiyana, Liza
IPTEK The Journal for Technology and Science Vol 22, No 4 (2011)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v22i4.81

Abstract

This paper is dealing with the engineering design of a gang drilling machine with jig & fixtures to make a prototype machine. This effort has been done in order to solve the problem which aroused in small business enterprises producing birdcages. The problem was how to minimize the production time in making a lot of holes that have same distance and straightness. Hopefully, the prototype machine can help the small business enterprises to increase their production rate.The design engineering process has been carried out by variant approximation on dowel pin modular fixtures in order to simplify fixtures design. CAD CAM software has also been used as fixtures synthesized method including geometric analysis and three dimensional fixtures assembling. The resulting prototype machine can be well operated and based on the running test, it can be concluded that the greater the motor rotation the greater the power needed. As for teak wood, at 250 rpm motor rotation the power needed is 26.5 watt, and at 400 rpm the motor needs power of 43.6 watt while at 600 rpm the motor needs power of 600 watt. The power consumption is also depends on the type of material, the better the mechanical properties of the materials, the higher the power consumption. For cast iron, the 400 rpm motor rotation needs power as high as 569.7 watt. This prototype of gang drilling machine needs power of 350 watt to make five holes on teak wood while ordinary drilling machine needs total power of 1350 watt.
Numerical Study of Mixed Convection in A Cooled Room Dedy Zul Hidayat Noor; Heru Mirmanto; Eddy Widiyono; liza rusdiyana
IPTEK The Journal for Technology and Science Vol 26, No 1 (2015)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v26i1.570

Abstract

The present work is carried out to study laminar mixed convection heat transfer inside a rectangular cooled room numerically. The chosen model is considered as a representation of a room facing the sun with a floor releasing heat resulted by electronic components or human activities. The Reynolds number and Richardson number are varied from 100 to 400 and 0 to 3, respectively, in order to cover laminar mixed convection phenomena. For the considered range of Re dan Ri, the flow regimes fall into  three modes. The higher Nusselt numbers are found at the higher values of Re, on the other hand, the forced convection leads to higher heat transfer rate than the free/natural convection.
EMS-45 Tool Steels Hardenability Experiment using Jominy ASTM A255 Test Method Syamsul Hadi; Eddy Widiyono; Winarto Winarto; Dedy Z. Noor
IPTEK The Journal for Technology and Science Vol 24, No 1 (2013)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v24i1.137

Abstract

Hardenability of steels is an important way to determine heat treatment and material properties that produce component products. Jominy test is one of the method to know hardenability of steels. The Jominy ASTM A255 in used as a method for carriying out and this reseach. Parameter such as austenite temperature, holding time, cooling rate and then the results is dedicated by the prediction result, with Non Linear Numerical Equation Method. Based on test, it’s known, increasing austenite temperature, longer holding time and high cooling rate, will increase hardenability of steels. The different between the results and the prediction result done by Sonh Yue-Peng[15], Matja equation[14] and Zehtab equation[10], about 5 % -10 %. The data obtained from this experiment can be used to determine the appropriated heat treatment in order to get the desired mechanical properties, as well as to avoid distortion.