Ardi Pujiyanta
Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad Dahlan Yogyakarta Jl. Prof. Dr. Soepomo, S.H., Warungboto, Janturan, Yogyakarta 55164 Telp : (0274) 563515 Ext. 3208

Published : 45 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Stacking-Based Support Vector Machine and Multilayer Perceptron for Dysarthria Detection Using MFCC Features Pujiyanta, Ardi; Noviyanto, Fiftin; Ismail, Taufiq
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5199

Abstract

The manual diagnosis of dysarthria is often time-consuming and requires the expertise of trained specialists, which can delay early intervention and treatment. This study aims to develop an automated detection system to improve diagnostic accuracy and efficiency. Mel-Frequency Cepstral Coefficients (MFCC) are used as the primary features, and three classification models are evaluated: Support Vector Machine (SVM), Multilayer Perceptron (MLP), and a stacking ensemble that combines both. The evaluation is conducted on a dataset of 240 audio samples. Experimental results show that the stacking ensemble achieves the highest performance, with an accuracy of 97.92%, surpassing SVM (95.83%) and MLP (93.75%). These findings highlight the significant potential of voice-based classification to accelerate dysarthria diagnosis, thus supporting clinical screening and speech therapy applications.
Sosialisasi Implementasi Teknik Elektro dari Rumah ke Revolusi Industri 4.0 di SMK Muhammadiyah 2 Playen Ferbriyanto, Suko; Darucandra, Nawa; Mulyadi, Mulyadi; Ali Akbar, Son; Pujiyanta, Ardi; Aridansyah, Aridansyah
Martabe : Jurnal Pengabdian Kepada Masyarakat Vol 8, No 8 (2025): MARTABE : JURNAL PENGABDIAN KEPADA MASYARAKAT
Publisher : Universitas Muhammadiyah Tapanuli Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31604/jpm.v8i8.%p

Abstract

Pengabdian masyarakat yang dilaksanakan di SMK Muhammadiyah 2 Playen bertujuan untuk meningkatkan literasi teknologi dan kesadaran siswa mengenai peran penting Teknik Elektro dalam keseharian hingga era Revolusi Industri 4.0. Kegiatan sosialisasi dilaksanakan dengan pendekatan edukatif dan praktis, yaitu melalui presentasi interaktif, diskusi. Materi yang disampaikan meliputi penerapan Internet of Things (IoT) di rumah, teknologi energi terbarukan, dan pengontrolan proses secara otomatis. Analisis data yang dihimpun dari pretest dan posttest menunjukkan terjadi peningkatan rata-rata yang signifikan, yaitu dari 75,31 menjadi 85,17, dengan p-value 0,001 dan ukuran efek (Cohen’s d) mencapai 1,20. Hal tersebut mengindikasikan bahwa kegiatan yang diselenggarakan mampu meningkatkan pengetahuan dan keterampilan siswa mengenai teknologi elektro yang tengah diterapkan di era Revolusi Industri 4.0. Keberhasilan kegiatan juga tampak dari antusiasme siswa saat sesi tanya jawab, yang lebih luas dan mendalam mengenai penerapan teknologi tersebut, sehingga siswa lebih siap dan mandiri untuk menghadapi tantangan teknologi di masa mendatang. Dengan demikian, kegiatan pengabdian masyarakat ini memberikan kontribusi penting, bukan hanya dari aspek edukasi, tetapi juga dari aspek sosial dan ekonomi, yaitu menumbuhkan keterampilan dan kemandirian teknologi di kalangan siswa SMK.
Fuzzy Logic and Neural Network-Based Self-Tuning PID for Vacuum Pressure Stabilization Sanjaya, Berza H.; Pujiyanta, Ardi; Puriyanto, Riky Dwi
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10945

Abstract

The conventional PID controller is widely used for vacuum pressure control; however, it has limitations when faced with nonlinear system characteristics and external disturbances, leading to a decline in performance. Several previous studies have proposed the integration of PID with intelligent methods, such as neural networks or fuzzy logic separately. Nevertheless, these singular approaches still encounter limitations in terms of adaptability and robustness. This study aims to develop a self-tuning PID method based on the combination of Neural Networks (NN) and Fuzzy Inference Systems (FIS) to enhance the stability and accuracy of vacuum pressure control. A nonlinear vacuum system plant model is constructed within the Simulink environment to generate a dataset used for training the NN with the Levenberg-Marquardt algorithm. The NN is employed to predict changes in PID parameters adaptively, while the FIS provides fine corrections to strengthen system stability. Simulation results demonstrate that the proposed approach effectively reduces overshoot from 36.47% to 31.51%, decreases steady-state error from 0.069 to 0.052, and lowers the RMSE value from 0.125 to 0.108 compared to conventional PID. Thus, the integration of NN and FIS within the self-tuning mechanism proves to be more effective in addressing nonlinear dynamics and external disturbances, resulting in a more stable and accurate system response.
Optimizing job scheduling on cloud resources using the first-come, first-served-SlotFree method Pujiyanta, Ardi; Noviyanto, Fiftin; Ismail, Taufiq
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9681

Abstract

Cloud computing environments encounter significant challenges in job scheduling, particularly due to excessive waiting times and inefficient resource utilization associated with conventional algorithms such as first-come, first-served (FCFS) and backfilling. This study introduces FCFS-SlotFree, a novel scheduling algorithm that enhances resource allocation efficiency by dynamically sorting jobs based on their arrival times and workloads, and subsequently assigning them to a fixed set of virtual machines (VMs) without relying on rigid time-slot constraints. This flexible scheduling approach facilitates better adaptation to heterogeneous workloads. Extensive experiments conducted under realistic cloud scenarios demonstrate that FCFS-SlotFree significantly reduces average waiting time (AWT) by approximately 32.78% compared to FCFS and by 9.68% compared to backfilling, while concurrently improving resource utilization by 3.58% and 1.27%, respectively. The results substantiate the algorithm’s effectiveness in optimizing scheduling performance and resource efficiency within complex cloud environments.
Perbandingan Metode K-Means Clustering Dan Metode Ward Dalam Mengelompokkan Pelangan Mall Iklima, Tia; Pujiyanta, Ardi
JURNAL FASILKOM Vol. 13 No. 3 (2023): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v13i3.6040

Abstract

Bagi setiap perusahaan pelanggan adalah aspek yang penting, apalagi dalam dunia bisnis. Karena pelanggan berperan penting dalam kemajuan perusahaan salah satunya Mall. Oleh karena itu perlu dilakukannya analisa lebih lanjut untuk menganalisis data pelanggan. Namun dalam menganalisa data pelanggan perlu menggunakan metode yang tepat dalam proses pengelompokan data pelanggan. Dalam penelitian ini dilakukan perbandingan dua metode yang berbeda, yaitu metode K-means dan metode Ward. Dataset yang digunakan dalam penelitian ini mengandung pola tingkah laku dari masing-masing pelanggan. Untuk menghitung jarak minimum dari setiap data dalam cluster digunakan Euclidean Distance. Data pelanggan yang digunakan yaitu data pelanggan Mall, yang diambil dari data public pada platform Kaggle.com, yang terdiri dari 5 variabel yaitu CustomerID, Gender, Age, Total Earning, dan Spending Score, dengan jumlah data dari masing-masing parameter ialah sebanyak 1000 data. Hasil penelitian menunjukkan bahwa metode K-means dan metode Ward dapat diterapkan pada dataset yang digunakan. Hasil pengelompokkan didapatkan 4 kelompok pelanggan yang berbeda. Nilai akurasi pada masing-masing metode dilakukan pengujian dengan menggunakan metode Silhouette Coefficient. Hasil pengelompokkan data pelanggan dengan metode K-means untuk nilai s(i) sebesar 0.67. Sedangkan nilai s(i) sebesar 0.81 untuk metode Ward. Berdasarkan hasil penelitian, untuk mengetahui kelompok pelanggan berdasarkan tingkat kemiripan setiap objek, penggunaan metode Ward lebih baik dibandingkan dengan metode KMeans dalam proses Clustering pada dataset pelanggan Mall.