Claim Missing Document
Check
Articles

Found 4 Documents
Search

IMPLEMENTASI ASSOCIATION RULE MINING UNTUK MENENTUKAN POLA KOMBINASI MAKANAN DENGAN ALGORITMA APRIORI Marina Rajagukguk; Rafiqa Dewi; Eka Irawan; Jaya Tata Hardinata; Irfan Sudahri Damanik
JURNAL FASILKOM (teknologi inFormASi dan ILmu KOMputer) Vol 10 No 3 (2020): Jurnal Fasilkom
Publisher : Fakultas Ilmu Komputer, Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (360.783 KB) | DOI: 10.37859/jf.v10i3.2308

Abstract

OH5 Hash Cafe is a business that is engaged in the food sector and there is a lot of competition in doing business that is increasingly difficult to do so it is necessary to develop a strategy, this study aims to determine the pattern of food combinations, the method used in this research is the Apriori Algorithm to be able to find out and processed using the Rapid Miner 9.7 software in determining food combination patterns, the Apriori Algorithm is an interesting type of association rule in data mining and an interesting association analysis to produce an efficient algorithm that is high frequency pattern analysis, an association can be identified with two benchmarks, namely: Support and Cofindence. Support is the percentage of item combinations in the database, while Confidence is the strong relationship between items in the association rule.
Fungsi Algoritma Kriptografi Hill Cipher Untuk Pengamanan File Gambar dan Pesan Teks Indra Gunawan; Sumarno Sumarno; Heru Satria Tambunan; Eka Irawan; Ika Okta Kirana
TECHSI - Jurnal Teknik Informatika Vol 10, No 1 (2018)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v10i1.605

Abstract

Dari banyaknya bidang ilmu komputer yang harus dibahas, diantaranya adalah pengamanan dari sebuah data. Diantara banyaknya data yang harus diamankan, bisa menggunakan algoritma kriptografi yang salah satunya adalah algoritma kriptografi Hill Cipher. Pengamanan data file gambar dan pesan teks dipadukan dengan fungsi algoritma kriptografi Hill Cipher yang dapat membantu meningkatkan keaslian pesan teks dan file gambar pada saat proses pengiriman pesan berlangsung. Sehingga pada saat pesan sampai kepada sipenerima, pesan tersebut masih bisa dijamin keaslian dari isi pesannya. Analisa ini bertujuan untuk meningkatkan keamanan pesan teks yang dari pesan asli sebelumnya dilakukan penyandian, sehingga menghasilkan pesan teracak yang selanjutnya pesan teks tersebut dipadukan kedalam file gambar. Kata kunci : Data, Ilmu Komputer, Kriptografi, Hill Cipher
Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat Deny Franata Pasaribu; Irfan Sudahri Damanik; Eka Irawan; Suhada; Heru Satria Tambunan
BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer Vol 2 No 1 (2021): March
Publisher : Puslitbang Sinergis Asa Professional

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.408 KB) | DOI: 10.37148/bios.v2i1.17

Abstract

Based on data on the results of oil palm production in PTPN IV Marihat displays several locations with fruit yields that vary in number. For this reason, grouping of potential fruit-producing locations is needed to know which locations produce large or small numbers of palm fruit. The production sharing is usually done based on the location or block of harvesting oil palm fruit. Therefore, a method is needed to facilitate the grouping of fruit producing locations. With the K-Means clustering approach, the division of location groups can be done based on harvested area (Ha), production realization (kg) and harvest year. In this research, clustering of potential fruit-producing areas was carried out using the K-Means algorithm. By using K-Means aims to facilitate the grouping of a block with a lot of fruit production, and low. The result of this research is that C1 (highest) is 14 Harvest Block data, and C2 (lowest) is 11 Harvest Block data.
Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi Muhammad Dwi Chandra; Eka Irawan; Ilham Syahputra Saragih; Agus Perdana Windarto; Dedi Suhendro
BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer Vol 2 No 1 (2021): March
Publisher : Puslitbang Sinergis Asa Professional

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (479.571 KB) | DOI: 10.37148/bios.v2i1.19

Abstract

The purpose of this study was to screen toddlers who were experiencing severe malnutrition according to province. Sources of research data used were obtained from the Ministry of Health of the Republic of Indonesia. The variables used are toddlers who experience malnutrition according to the Province. In this study using Data Mining Techniques using the K-means algorithm. It is expected that the results of this study can provide input to the central government to pay more attention to nutritional intake in infants, so as to increase the growth and development of toddlers in Indonesia. . And the data obtained by high clusters are 15 Provinsi yaitu (Aceh, Sumatera Utara, Nusa Tenggara Barat, Nusa Tenggara Timur, Kalimantan Barat, kalimantan Tengah, Kalimantan Selatan, Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara, Sulawesi Tenggara, Gorontalo, Sulawesi Barat, Papua Barat, Papua), dan cluster rendah ada 19 yaitu (Sumatera Barat, Riau, Jambi, Sumatera Selatan, Bengkulu, Lampung, Kep. Bangka Belitung, Kep. Riau, Dki Jakarta, Jawa Barat, Jawa Tengah, DI Yogyakarta, Jawa Timur, Banten, Bali, Kalimantan Timur, Kalimantan Utara, Sulawesi utara, Maluku Utara).