Claim Missing Document
Check
Articles

Found 36 Documents
Search

Sentiment Analysis of the TPKS Law on Twitter: A Comparative Study of Classification Algorithm Performance Mawar, Heni Sapta; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11503

Abstract

The enactment of Law Number 12 of 2022 concerning the Crime of Sexual Violence (UU TPKS) has sparked significant public discourse on social media, especially on Twitter. This study aims to identify the most effective classification algorithm for analyzing public sentiment regarding the UU TPKS. A total of 2,351 Indonesian-language tweets were collected, preprocessed, and manually labeled into positive and negative sentiments. The Term Frequency–Inverse Document Frequency (TF-IDF) method was used for feature extraction, followed by classification using six algorithms: Naive Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The evaluation results show that SVM and Random Forest achieved the highest accuracy of 85.35%, precision of 0.85, recall of 0.85, and F1-score of 0.83, outperforming other models in handling high-dimensional and imbalanced data. These results demonstrate that the combination of TF-IDF with SVM and Random Forest provides an effective and reliable approach for sentiment analysis of Indonesian-language social media data, particularly in evaluating public responses to socio-legal policies such as the UU TPKS.
Segmentation of Generation Z Spending Habits Using the K-Means Clustering Algorithm: An Empirical Study on Financial Behavior Patterns Sylvester, Gunawan; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11506

Abstract

Generation Z, born between 1997 and 2012, exhibits unique consumption behaviors shaped by digital technology, modern lifestyles, and evolving financial decision-making patterns. This study segments their financial behavior using the K-Means clustering algorithm applied to the “Generation Z Money Spending” dataset from Kaggle. In addition to K-Means, alternative clustering algorithms—K-Medoids and Hierarchical Clustering—are evaluated to compare their effectiveness in identifying behavioral patterns. The dataset consists of 1,700 individuals with 15 numerical spending attributes, including rent, food, entertainment, education, savings, and investments. All data were normalized using Min-Max Scaling prior to clustering. The analysis identifies six distinct clusters, ranging from highly consumption-oriented groups (with higher spending on entertainment and online shopping) to financially conscious groups prioritizing savings and investments. A quantitative approach was used, incorporating exploratory data analysis, correlation testing, and the Elbow Method to determine the optimal number of clusters. The optimal cluster count of six is supported by a Davies-Bouldin Index (DBI) score of 2.412, indicating acceptable but improvable cluster separation. Each cluster displays unique characteristics: Cluster 0 (average age 20.6) focuses on savings and investments with moderate essential spending; Cluster 1 (average age 23.6) prioritizes education and higher rent expenses; Cluster 2 (average age 20.3) is digitally oriented, spending more on online shopping and entertainment; Cluster 3 (average age 25.2) demonstrates financial stability with balanced expenditures; Cluster 4 (average age 24.9) emphasizes savings and investments with moderate living costs; and Cluster 5 (average age 24.96) combines strong saving habits with balanced essential and leisure spending. Model performance was assessed using the Davies-Bouldin Index, Silhouette Score, and Calinski-Harabasz Index to ensure comprehensive evaluation of cluster quality. The findings highlight the diverse spending behaviors of Generation Z, offering valuable insights for businesses, policymakers, and financial service providers to develop targeted strategies aligned with each segment’s characteristics.
Transfer Learning Analysis on Tuberculosis Classification Using MobileNetV2 Architecture Based on Chest X-Ray Images Latupono, Ali Samsul; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11510

Abstract

Tuberculosis(TBC) remains a major global health issue, with millions of new cases reported annually. Early and accurate diagnosis is essential, but manual interpretation of chest X-ray(CXR) images is limited by subjectivity and resource constrains. This study applies the MobileNetV2 architecture using transfer learning to classify tuberculosis from CXR images. The publicly available Tuberculosis Chest X-ray dataset containing 4200 images was divided into training (70%), validation (15%), and testing (15%). The pretrained MobileNetV2 model on ImageNet was used as the base network, with additional classification layers and training through the Adam optimizer and early stopping. The model achieved a validation accuracy above 99.84% after the second epoch maintained stable performance. Once the test set, model reached 99.84% accuracy, with precision 99.53% and recall 99.90% for the tuberculosis class. The result demonstrate that the transfer learning with MobileNetV2 provides a fast, efficient, and highly accurate method for tuberculosis detection. This model show potential for integration into Computer-Aided Diagnosis (CAD) system in low resource clinical settings.
Comparative Analysis of EfficientNet-B0 and ViT-B16 for Multiclass Classification of Green Coffee Beans Syaputra, Muh. Rezky; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11563

Abstract

Green coffee bean classification plays an important role in the coffee supply chain, as bean quality has a direct impact on the taste and final quality of the product. The USK-Coffee dataset, which consists of four bean object classes defect, longberry, peaberry, and premium, is photographed under varied lighting conditions and capture angles, thus challenging the accuracy of conventional visual models. Although lightweight CNN models have been used, not many studies have directly compared transformer-based architectures (ViT-B16) and modern efficient CNNs (EfficientNet-B0) for green coffee bean classification under real conditions. With transfer learning strategy, image augmentation (resize, flip, rotation, color jitter, random crop), and normalization, we evaluate the performance of both models on the dataset. ViT-B16 achieved 85% accuracy on the test data (F1-score 0.85), with a fast batch inference latency of 0.0074 seconds per batch. EfficientNet-B0 achieved 87% accuracy (F1-score 0.87), with a slower batch latency (0.0106 seconds per batch). However, EfficientNet-B0 is significantly faster for single image inference (real-time) (0.035 seconds) compared to ViT-B16 (0.426 seconds). This trade-off higher accuracy/faster single inference on EfficientNet-B0 vs. faster batch processing on ViT-B16 shows that both are feasible for edge computing-based classification systems.
L2IC and MobileViT-XXS for BISINDO Alphabet Recognition Artamma, Chanan; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11575

Abstract

This study proposes a Landmark-to-Image Conversion (L2IC) approach integrated with the MobileViT-XXS architecture for Indonesian Sign Language (BISINDO) alphabet recognition. The method converts 42 hand keypoints, extracted using MediaPipe Hands into normalized 224×224 grayscale images to capture spatial hand patterns more effectively. These L2IC representations are then used as input to the MobileViT-XXS model, trained for 30 epochs with a learning rate of 0.001. Experimental results show that the model achieves an accuracy and Macro F1-Score of 97.98%, outperforming baseline approaches using raw RGB images and MLP-based classification on numerical keypoints. While the model demonstrates strong performance in controlled offline experiments, further evaluation is required to assess its robustness under real-world dynamic BISINDO usage and deployment on resource-limited devices. These findings indicate that the L2IC representation effectively captures essential spatial information, contributing to high recognition accuracy in static BISINDO hand gesture classification.
Sentiment Analysis of Neobank Digital Banking using Support Vector Machine Algorithm in Indonesia Kusnawi, Kusnawi; Rahardi, Majid; Pandiangan, Van Daarten
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1652

Abstract

Currently, in the industrial era 4.0, information and communication technology is very developed, whereas, in this era, there is an increase in complex activities, one of which is in the banking sector. With the ease and efficiency of online finance, people want to switch to using digital banks. Neobank is an online savings and deposit application from Bank Neo Commerce (BCN) that the public can use by using the Internet. One of the online services is mobile banking which can be used by both Android and iOS versions of customers. Users can review Neobank's performance and services through the Google Play Store to improve and evaluate Neobank's performance. Neobank application reviews on the Google Play Store are increasing. Therefore, a review analysis is needed by conducting a sentiment analysis on Neobank's review. The data amounted to 3159 user reviews collected from reviews of the Neobank application on the Google Play Store. This study aims to classify Neobank user review data, including positive or negative sentiments. The method used in this study is an experimental method using the Support Vector Machine algorithm. The accuracy results obtained using the Support Vector Machine algorithm are 82.33%, which is owned by the scenario of 90% training data and 10% test data. The precision results are 82%, and recall is 81%. Future studies can add datasets from various sources so that there are even more datasets so as to increase the accuracy of model classification.