Claim Missing Document
Check
Articles

Found 13 Documents
Search

PKM PENGGUNAAN LAMPU PENERANGAN JALAN TENAGA SURYA UNTUK MENDUKUNG KAWASAN WISATA EDUKASI SUBAK TEBA MAJELANGU DESA KESIMAN KERTALANGU Midiani, Luh Putu Ike; Wirajati, I Gusti Agung Bagus; Arsana, Made Ery
Jurnal Vokasi Vol 7, No 3 (2023): November
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/vokasi.v7i3.4580

Abstract

Kawasan Wisata Subak Teba Majelangu di Desa Kesiman Kertalangu terletak di wilayah dengan keterbatasan jaringan listrik. Minimnya pencahayaan di jalan-jalan daerah ini mengakibatkan terganggunya kenyamanan dan keamanan dalam beraktivitas, terutama saat sore menjelang malam hari. Berdasarkan kondisi tersebut tim pengabdian dari Prodi Teknologi Rekayasa Utilitas Jurusan Teknik Mesin Politeknik Negeri Bali melakukan Pengabdian kepada Masyarakat (PkM) dengan menyediakan lampu penerangan jalan tenaga surya di kawasan Wisata Edukasi Subak Teba Majelangu. Kegiatan PkM melewati serangkaian tahapan sebagai berikut : 1) analisis situasi, 2) penentuan kebutuhan daya lampu, 3) persiapan peralatan, 4) instalasi dan pemeliharaan, 5) evaluasi dan monitoring. Hasil yang dicapai adalah pemasangan lampu penerangan jalan tenaga surya di kawasan Wisata Edukasi Subak Teba Majelangu Desa Kesiman Kertalangu, yang mampu memberikan penerangan yang memadai di malam hari untuk jalan dan area sekitarnya, serta memiliki durasi pencahayaan yang panjang. Pemasangan lampu penerangan jalan tenaga surya merupakan implementasi penggunaan energi terbarukan dalam upaya pelestarian lingkungan..
Determination The Cooling Capacity of The Fan Coil Unit (FCU) in A Hotel Room - Based on Heat Transfer Analysis Midiani, Luh Putu Ike; Subagia, I Wayan Adi; Antara, I Made Angga
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 25 No. 1 (2025): March
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/logic.v25i1.45-53

Abstract

Fan Coil Unit (FCU) with the appropriate cooling capacity is needed to obtain room thermal comfort. FCU installed based on the cooling load of the room. Cooling load is affected by room volume, material of : wall, floor, roof, equipment in a room, ventilation, infiltration, windows, outdoor air temperature and humidity, indoor air temperature and  humidity. Appropriate and correct FCU installation will have an impact on the energy use of a building. Energy saving efforts are made when determining FCU capacity by calculating cooling load by analyzing heat transfer. This paper investigates and analyzes the amount of room cooling load using the CoolPack application. Calculation of cooling capacity using the CoolPack application is carried out after determining the thermal conductivity and material thickness, thermal resistance of the inner surface and outer surface of the wall, roof, floor, and heat transfer coefficient. Based on the results of calculations and analysis, it was concluded that the total cooling load was 3.58 kW. Furthermore, the FCU capacity to be installed must match the FCU capacity available on the market and be greater than the total cooling load in order to achieve the expected comfort. Proper and correct installation of FCUs will have an impact on energy use in a building is an effort to implement energy saving.
Experimental Study of Cooling Performance and Electrical Parameters in a Microcontroller-Driven Inverter AC System Negara, I Gede Artha; Anakottapary, Daud Simon; Midiani, Luh Putu Ike; Temaja, I Wayan; Santosa, I Dewa Made Cipta
invotek Vol 23 No 2 (2023): INVOTEK: Jurnal Inovasi Vokasional dan Teknologi
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/invotek.v23i2.1105

Abstract

Recent advancements in air conditioning (AC) technologies, such as inverters, enable the compressor to remain activated despite reaching the setpoint temperature. This study investigates the cooling performance and electrical parameters of a split inverter AC system controlled by a microcontroller in order to determine the operational performance characteristics of the air conditioning system. An ATmega 2560 microcontroller integrated with PZEM, DS18B20, and LCD I2C sensors monitors was 8,525 Btu/h capacity split inverter AC. During a 1-hour experimental run, the temperature differential between supply air (Tsupply) and return air (Treturn) stabilized at approximately 17 °C, with Tsupply reaching a minimum of 8.5 °C. Treturn remained relatively constant after 500 s with no fluctuations. Moreover, power draw maintained an average of 750 W (1 PK) with no variations, exhibiting an inverse relationship with Tsupply. The maximum energy consumption recorded during the experiment was 1,373 kWh. As expected based on fundamental thermodynamic principles, the energy usage showed a direct proportional relationship with the total runtime of the system. That is, the longer the AC system was engaged, the higher the total energy required to maintain the cooling effect. Overall, microcontroller-based split inverter AC enables real-time performance monitoring and efficient operation, representing a promising technology.