Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : IJoICT (International Journal on Information and Communication Technology)

Classification of Dengue Hemorrhagic Fever (DHF) Spread in Bandung using Hybrid Naïve Bayes, K-Nearest Neighbor, and Artificial Neural Network Methods Fatri Nurul Inayah; Sri Suryani Prasetiyowati; Yuliant Sibaroni
International Journal on Information and Communication Technology (IJoICT) Vol. 7 No. 1 (2021): June 2021
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v7i1.562

Abstract

Dengue fever is a dangerous disease caused by the dengue virus. One of the factors causing dengue fever is due to the place where you live in the tropics, so that cases of dengue fever in Indonesia, especially in the Bandung Regency area, will continue to show high numbers. Therefore, information is needed on the spread of this disease by requiring the accuracy and speed of diagnosis as early prevention. In terms of compiling this information, classification techniques can be done using a combination of methods Naïve Bayes, K-Nearest Neighbor(KNN), and Artificial Neural Network(ANN) to build predictions of the classification of dengue fever, and the data used in this Final Project are dataset affected by the spread of dengue fever in Bandung regency in the 2012-2018 period. The hybrid classifier results can improve accuracy with the voting method with an accuracy level of 90% in the classification of dengue fever.
Comparison of Term Weighting Methods in Sentiment Analysis of the New State Capital of Indonesia with the SVM Method Muhammad Kiko Aulia Reiki; Yuliant Sibaroni; Erwin Budi Setiawan
International Journal on Information and Communication Technology (IJoICT) Vol. 8 No. 2 (2022): December 2022
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v8i2.681

Abstract

The relocation of the State Capital to “Nusantara”, which was inaugurated with the enactment of UU No. 3 of 2022, is a significant project that has sparked polemics among Indonesian citizens. Many people expressed their opinions and thoughts regarding the relocation of the State Capital on Twitter. This tendency of public opinion needs to be identified with sentiment analysis. In sentiment analysis, term weighting is an essential component to obtain optimal accuracy. Various people are trying to modify the existing term weighting to increase the performance and accuracy of the model. One of them is icf-based or tf-bin.icf, which combines inverse category frequency (ICF) and relevance frequency (RF). This study compares the tf-idf, tf-rf, and tf-bin.icf term weighting with the SVM classification method on the new State Capital of Indonesia topic. The tf-idf weighting results are still the best compared to the tf-bin.icf and tf-rf term weights, with an accuracy score of 88.0% a 1,3% difference with tf-bin.icf term weighting.
Multi Aspect Sentiment Analysis of Mutual Funds Investment App Bibit Using BERT Method Serly Setyani; Yuliant Sibaroni
International Journal on Information and Communication Technology (IJoICT) Vol. 9 No. 1 (2023): June 2023
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v9i1.718

Abstract

With the rapid development of technology, an investor no longer needs to visit investment companies to make investments. Investors can conduct all investment transactions through their smartphone screens. Bibit is one investment application that can help investors invest in mutual funds. There are many reviews given by users every day, therefore, aspect-based sentiment analysis is needed to identify the aspects and sentiments of users from each review. BERT is one popular text classification method that currently has good performance. Therefore, aspect-based sentiment analysis will be carried out in this study using the BERT method with pre-trained IndoBERT on Bibit application reviews. From the multi-aspect sentiment analysis classification results, the service aspect had the highest average accuracy score of 0.92, the user satisfaction aspect had an average accuracy score of 0.87, and the system aspect had the lowest average accuracy score of 0.75. From the sentiment analysis results, the company can improve the system and service aspects of the Bibit application to provide better service & functionality.
Classification Prediction of Dengue Fever Spread Using Decision Tree with Time-Based Feature Expansion Hawa, Iqlima Putri; Prasetiyowati, Sri Suryani; Sibaroni, Yuliant
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 2 (2024): Vol.10 No. 2 Dec 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i2.1026

Abstract

In Indonesia, dengue hemorrhagic fever (DHF) has become a serious community health concern due to fluctuating incidence rates influenced by several factors. It requires comprehensive control strategies to prevent the rise of the incidence. This study seeks to classify the future spread of DHF in Bandung City, accompanied by optimal factors that influence the increase in its spread. This study proposes using Decision Tree to predict a classification of dengue hemorrhagic fever (DHF) spread with implementation of spatial time-based feature expansion. The developed scenario is to build a target class classification prediction model based on the previous time period. From the developed scenario, the selected model has optimal performance to form a classification prediction model in the future. The results obtained show that the performance of Decision Tree using time-based feature expansion is more than 90%. The contribution of this study is to inform the public and health institution regarding DHF spread for the future and influential factor so that the government can provide policies as early as possible to prevent DHF spread.
Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine (SVM) Algorithm Muhamad Agung Nulhakim; Yuliant Sibaroni; Ku Muhammad Naim Ku Khalif
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 2 (2024): Vol.10 No. 2 Dec 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i2.1032

Abstract

Twitter serves as a crucial platform for expressing public sentiment during natural disasters. This study conducts geospatial sentiment analysis on 988 labeled tweets related to the eruption of Mount Marapi, categorized into four aspects which are Basic Needs, Impact and Damage, Response and Action, and Weather and Nature. The preprocessing stage includes data cleaning, case folding, tokenization, normalization, stopword removal, and stemming. Feature extraction uses TF-IDF, while class imbalance is addressed with SMOTE. Each aspect is modeled separately using Support Vector Machine (SVM) with linear, polynomial, and RBF kernels, evaluated through 10-fold cross-validation. Results show that the linear kernel performed best across most aspects, achieving 92.42% accuracy for Impact and Damage, 80.38% for Response and Action, and 94.22% for Weather and Nature. Meanwhile, the RBF kernel showed competitive performance with 89.54% accuracy for Basic Needs. Geospatial visualization highlights regional sentiment distribution patterns, offering insights into public responses across Indonesian regions. This study demonstrates the effectiveness of the linear kernel in SVM for sentiment classification and emphasizes the role of geospatial analysis in understanding public sentiment during natural disasters.
Prediction of Classification of Air Quality Distribution in Java Island using ANN with Time-Based Feature Expansion and Spatial Analysis Gutama, Soni Andika; Prasetiyowati, Sri Suryani; Sibaroni, Yuliant
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 2 (2024): Vol.10 No. 2 Dec 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i2.1035

Abstract

Air pollution is a major concern that significantly impacts human health and the environment, especially in densely populated and economically active areas like Java, Indonesia. Air pollution is primarily caused by motor vehicles and industrial activities, leading to higher concentrations of harmful pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM10). In this study, an Artificial Neural Network (ANN) model is employed to forecast air quality classifications across Java Island, utilizing time-based features and spatial analysis. The model achieves an impressive accuracy and an F1-score of 92.19%, demonstrating its capability in capturing the intricate dynamics of air quality. These results highlight the potential of the ANN model in supporting effective policy-making, crisis management, and the development of environmentally sustainable infrastructure.
Co-Authors Abduh Salam Adhe Akram Azhari Aditya Andar Rahim Aditya Firman Ihsan Aditya Gumilar Aditya Iftikar Riaddy Adiwijaya Agi Maulana Al Ghazali, Nabiel Muhammad Alfauzan, Muhammad Fikri Alya, Hasna Rafida Andrew Wilson Angger Saputra, Revelin Annisa Aditsania Apriani, Iklima Aqilla, Livia Naura Ardana, Aulia Riefqi Arista, Dufha Arminta, Adisaputra Nur Arya Pratama Anugerah Asramanggala, Muhammad Sulthon Atikah, Balqis Sayyidahtul Attala Rafid Abelard Aufa, Rizki Nabil Aulia Rayhan Syaifullah Aurora Az Zahra, Elita Azmi Aulia Rahman Bunga Sari Chamadani Faisal Amri Chindy Amalia Claudia Mei Serin Sitio Damar, Muhammad Damarsari Cahyo Wilogo Delvanita Sri Wahyuni Derwin Prabangkara Desianto Abdillah Devi Ayu Peramesti Dhina Nur Fitriana Dhina Nur Fitriana Diyas Puspandari Ekaputra, Muhammad Novario Ellisa Ratna Dewi Ellisa Ratna Dewi Elqi Ashok Erwin Budi Setiawan Fadhilah Nadia Puteri Fadli Fauzi Zain Fairuz, Mitha Putrianty Faiza Aulia Rahma Putra Farizi, Azziz Fachry Al Fatha, Rizkialdy Fathin, Muhammad Ammar Fatihah Rahmadayana Fatri Nurul Inayah Fauzaan Rakan Tama Feby Ali Dzuhri Fery Ardiansyah Effendi Ferzi Samal Yerzi Fhira Nhita Fitriansyah, Alam Rizki Fitriyani Fitriyani F. Fitriyani Fitriyani Fitriyani Fitriyani Gilang Brilians Firmanesha Gusti Aji, Raden Aria Gutama, Soni Andika Hanif, Ibrahim Hanurogo, Tetuko Muhammad Hanvito Michael Lee Hawa, Iqlima Putri Haziq, Muhammad Raffif I Gusti Ayu Putu Sintha Deviya Yuliani I Putu Ananda Miarta Utama Ibnu Muzakky M. Noor Indra Kusuma Yoga Indwiarti irbah salsabila Irfani Adri Maulana Irma Palupi Islamanda, Muhammad Dinan Izzan Faikar Ramadhy Izzatul Ummah Janu Akrama Wardhana Jauzy, Muhammad Abdurrahman Al Kemas Muslim Lhaksmana Kinan Salaatsa, Titan Ku Muhammad Naim Ku Khalif Lanny Septiani Laura Imanuela Mustamu Lesmana, Aditya Lintang Aryasatya Lisbeth Evalina Siahaan Made Mita Wikantari Mahadzir, Shuhaimi Maharani, Anak Agung Istri Arinta Mahmud Imrona Maulida , Anandita Prakarsa Mitha Putrianty Fairuz Muhamad Agung Nulhakim Muhammad Arif Kurniawan Muhammad Damar Muhammad Ghifari Adrian Muhammad Hadyan Baqi Muhammad Ikram Kaer Sinapoy Muhammad Kiko Aulia Reiki Muhammad Novario Ekaputra Muhammad Rajih Abiyyu Musa Muhammad Reza Adi Nugraha Muldani, Muhamad Dika Nanda Ihwani Saputri Naufal Alvin Chandrasa Ni Made Dwipadini Puspitarini Niken Dwi Wahyu Cahyani Novitasari, Ariqoh Nuraena Ramdani Okky Brillian Hibrianto Okky Brillian Hibrianto Pernanda Arya Bhagaskara S M Pilar Gautama, Hadid Prasetiyowati, Sri Prasetyo, Sri Suryani Prasetyowati, Sri Sulyani Prawiro Weninggalih Priyan Fadhil Supriyadi Purwanto, Brian Dimas Puspandari, Dyas Putra, Daffa Fadhilah Putra, Ihsanudin Pradana Putra, Maswan Pratama Putri, Dinda Rahma Putri, Pramaishella Ardiani Regita Rachmadania Irmanita Rafik Khairul Amin Rafika Salis Rahmanda, Rayhan Fadhil Raisa Benaya Revi Chandra Riana Rian Febrian Umbara Rian Putra Mantovani Ridha Novia Ridho Isral Essa Ridho, Fahrul Raykhan Rifaldy, Fadil Rifki Alfian Abdi Malik Riski Hamonangan Simanjuntak Rizki Annas Sholehat Rizky Fauzi Ramadhani Rizky Yudha Pratama Rizky, Muhammad Zacky Faqia Salis, Rafika Salsabila, Syifa Saniyah Nabila Fikriyah Saragih, Pujiaty Rezeki Satyananda, Karuna Dewa Septian Nugraha Kudrat Septian Nugraha Kudrat Serly Setyani Shyahrin, Mega Vebika Sinaga, Astria M P Siti Inayah Putri Siti Uswah Hasanah Sri Suryani Prasetiyowati Sri Suryani Prasetyowati Sri Suryani Sri Suryani Sri Utami Sujadi, Cika Carissa Suryani Prasetyowati, Sri Syarif, Rizky Ahsan Umulhoir, Nida Varissa Azis, Diva Azty Viny Gilang Ramadhan Vitria Anggraeni WAHYUDI, DIKI Widya Pratiwi Ali Winico Fazry Wira Abner Sigalingging Zaenudin, Muhammad Faisal Zaidan, Muhammad Naufal Zain, Fadli Fauzi ZK Abdurahman Baizal