Dwiwahju Sasongko
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132,

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Modified Two-Step Dimethyl Ether (DME) Synthesis Simulation from Indonesian Brown Coal Sasongko, Dwiwahju; Luthan, Abdurrahman Fadhlil Halim; Wulandari, Winny
Journal of Engineering and Technological Sciences Vol 48, No 3 (2016)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (271.793 KB) | DOI: 10.5614/j.eng.technol.sci.2016.48.3.6

Abstract

A theoretical study was conducted to investigate the performance of dimethyl ether (DME) synthesis from coal. This paper presents a model for two-step DME synthesis from brown coal represented by the following processes: drying, gasification, water-gas reaction, acid gas removal, and DME synthesis reactions. The results of the simulation suggest that a feedstock ratio of coal : oxygen : steam of 1 : 0.13 : 0.821 produces the highest DME concentration. The water-gas reactor simulation at a temperature of 400°C and a pressure of 20 bar gave the ratio of H2/CO closest to 2, the optimal value for two-step DME synthesis. As for the DME synthesis reactor simulation, high pressure and low temperature promote a high DME concentration. It is predicted that a temperature of 300°C and a pressure of 140 bar are the optimum conditions for the DME synthesis reaction. This study also showed that the DME concentration produced by the two-step route is higher than that produced by one-step DME synthesis, implying that further improvement and research are needed to apply two-step DME synthesis to production of this liquid fuel.
Karakterisasi Produk Biosolubilisasi Lignit oleh Kapang Indigenus dari Tanah Pertambangan Batubara di Sumatera Selatan Sugoro, Irawan; Hermanto, Sandra; Sasongko, Dwiwahju; Indriani, Dea; Aditiawati, Pingkan
JURNAL BIOLOGI INDONESIA Vol 7, No 2 (2011): JURNAL BIOLOGI INDONESIA
Publisher : Perhimpunan Biologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (170.878 KB) | DOI: 10.14203/jbi.v7i2.3116

Abstract

ABSTRACTCharacterization of Lignite Biosolubilization Products by Indigenous Moulds from Soil ofCoal Mining in South Sumatera. Biosolubilization of coal is a potential technology of convertingsolid coal to liquid fuel and chemicals at ambient condition. Our previous research hassuccessfully isolated four moulds from soil at coal mining - South Sumatera and has potency aslignite biosolubilization agent, i.e. T1, T2, T4, T5. The objective of this research was to characterizeof lignite biosolubilization products by four isolates. The method used was sub-mergedculture. Cultivation medium was MSS+ (minimal salt + sucrose 0,1% + yeast extract 0,01% +lignite 5 %). Incubation was conducted at room temperature for 28 days. The result showed thatall indigenos moulds have different ability in lignite biosolubilization. The highestbiosolubilization occurred after 7 days of incubation belonging to T1 isolate. However, GC-MSanalysis showed the largest percentage of hydrocarbon compound which equivalent to gasolineand diesel was T5 after 7 days of incubation.Key words: Biosolubilization, lignite, moulds, coal.
KARAKTERISASI PRODUK BIOSOLUBILISASI LIGNIT OLEH KAPANG INDIGENUS DARI TANAH PERTAMBANGAN BATUBARA DI SUMATERA SELATAN Sugoro, Irawan; Hermanto, Sandra; Sasongko, Dwiwahju; Indriani, Dea; Aditiawati, Pingkan
JURNAL BIOLOGI INDONESIA Vol 7, No 2 (2011): JURNAL BIOLOGI INDONESIA
Publisher : Perhimpunan Biologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jbi.v7i2.3116

Abstract

ABSTRACTCharacterization of Lignite Biosolubilization Products by Indigenous Moulds from Soil ofCoal Mining in South Sumatera. Biosolubilization of coal is a potential technology of convertingsolid coal to liquid fuel and chemicals at ambient condition. Our previous research hassuccessfully isolated four moulds from soil at coal mining - South Sumatera and has potency aslignite biosolubilization agent, i.e. T1, T2, T4, T5. The objective of this research was to characterizeof lignite biosolubilization products by four isolates. The method used was sub-mergedculture. Cultivation medium was MSS+ (minimal salt + sucrose 0,1% + yeast extract 0,01% +lignite 5 %). Incubation was conducted at room temperature for 28 days. The result showed thatall indigenos moulds have different ability in lignite biosolubilization. The highestbiosolubilization occurred after 7 days of incubation belonging to T1 isolate. However, GC-MSanalysis showed the largest percentage of hydrocarbon compound which equivalent to gasolineand diesel was T5 after 7 days of incubation.Key words: Biosolubilization, lignite, moulds, coal.
Model Validation of Biomass-Coal Blends Co-Pyrolysis to Produce Hybrid Coal Zahra, Aghietyas Choirun Az; Prasetyo, Hendi Aviano; Rizkiana, Jenny; Wulandari, Winny; Sasongko, Dwiwahju
Indonesian Journal of Energy Vol. 2 No. 2 (2019): Indonesian Journal of Energy
Publisher : Purnomo Yusgiantoro Center

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33116/ije.v2i2.41

Abstract

Co-pyrolysis of coal and biomass blend to produce hybrid coal has recently been experimentally studied by some previous researchers. For similar generated energy, a newly developed hybrid coal is claimed to be more environmentally friendly compared to the coal only due to the release of neutral CO2. To acquire a better understanding of co-pyrolysis of coal and biomass blend, an experiment had been carried out in a tubular furnace reactor. For this purpose, the blends of constant mass composition of 20 wt% sawdust and 80 wt% low-rank coal were used throughout the study. It was found from the experiment that approximately 42.1% carbon, and 1.6% of ash were produced from the co-pyrolysis blend. Then, a steady state simulation of co-pyrolysis was developed using Aspen Plus v8.8 to predict the hybrid coal carbon content and required heat to perform the co-pyrolysis. The model simulation showed that hybrid coal yielded 44.0% carbon, which was at 4.5% deviation from the experimental study. The model had also been successfully used to estimate heat required to produce hybrid coal. It predicted that the equivalent heat of 336.2 kW was required to produce hybrid coal from 1,000 kg/h blend feed. The heat generated by the modeling of sawdust biomass combustion for fuel purposes was also estimated to supply heat for endothermic co-pyrolysis. It was found that 1,000 kg/h sawdust was predicted to be equivalent to 371.4 kW. This suggests that for scaling up purpose, ratio of sawdust fuel to blend feed of 1:1.1 is sufficient for this process.