Kiky Corneliasari Sembiring
Research Center for Chemistry, Indonesian Institute of Science, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Banten

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Complex Concentrated Alloy Catalyst of AlCrFeCoNi for Heterogeneous degradation of Rhodamine B Sembiring, Kiky Corneliasari; Fahrezi, Irgi Ahmad; Muhdarina, Muhdarina; Afandi, Ahmad
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20110

Abstract

The Fe-based catalysts have attracted good attention due to their earth abundance and low toxicity with good Fenton-like performance. However, the narrow pH working range and iron-containing sludge produced during the reaction drove the necessary of developing a potential catalyst in the corresponding application. High entropy alloy that now expands to complex concentrated alloy (CCA) represents a new class of material owing to a broader range of functional and structural properties. A new application of CCA as a catalyst for catalytic degradation of azo dyes has already been a scientific research hotspot. AlCrFeCoNi CCA powder has been successfully synthesized by mechanical alloying (MA) method using a vertical planetary ball mill. Based on the characterization, the catalyst possessed a spherical morphology with a particle size range of 3.5-12.6 mm. The catalyst exhibited photo-Fenton performance up to 85.3% which would be a promising Fenton-like catalyst for wastewater treatment. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Bimetallic Ru-Sn as Effective Catalysts for the Selective Hydrogenation of Biogenic Platform Chemicals at Room Temperature Azzahra, Atina Sabila; Dewi, Heny Puspita; Mikrianto, Edi; Sembiring, Kiky Corneliasari; Sunnardianto, Gagus Ketut; Nata, Iryanti Fatyasari; Rodiansono, Rodiansono; Jayanudin, Jayanudin
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20067

Abstract

Supported bimetallic ruthenium-tin (denoted as Ru-Sn(x); x = molar ratio of Ru/Sn) catalysts were examined for room temperature (RT) hydrogenation of biogenic platform chemicals of levulinic acid (LA) to g-valerolactone (GVL). Six types of metal oxide support c.a. Nb2O5, TiO2, ZnO, ZrO2, g-Al2O3, active charcoal (AC), were employed as the support for Ru-Sn(x). Ru-Sn(3.0)/Nb2O5 (Ru/Sn = 3.0) that reduced at 500 oC demonstrated the highest yield of GVL (98%) at 30 oC, 30 bar H2 for 3 h. The increase in Sn loading amount (Ru/Sn = 1.5) resulted in decreasing of LA conversion (83%) under the same reaction conditions. Among the studied supported Ru-Sn catalysts, Nb2O5 and ZnO supports exhibited better catalytic performances than that other for RT hydrogenation of LA and various biogenic platform chemicals. The Ru-Sn(3.0)/Nb2O5 catalyst was characterized by means of various adsorption and spectroscopic techniques. The Ru-Sn(3.0)/Nb2O5 catalyst was found to be reusable without any significant loss of its activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA  License (https://creativecommons.org/licenses/by-sa/4.0).