Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Teknologi Informasi dan Ilmu Komputer

Deteksi dan Klasifikasi Merek Mobil untuk Penentuan Iklan Billboard Menggunakan Convolution Neural Network Swastika, Windra; Kurniawan, Ardian; Setiawan, Hendry
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 4: Agustus 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020742183

Abstract

Dunia periklanan di Indonesia saat ini memiliki perkembangan yang sangat pesat. Hal ini dibuktikan dengan semakin bertambah banyaknya media periklanan yang diciptakan, salah satunya adalah iklan billboard pada jalan raya. Iklan billboard ini memiliki kelemahan, yaitu materi atau konten dari iklan yang ditampilkan tidak dapat berubah-ubah, dengan demikian maka target dari periklanan tidak bisa tertuju pada konsumen yang tepat. Untuk mengatasi masalah tersebut maka dibutuhkan pemanfaatan teknologi untuk mendukung keefektifan kinerja dari iklan billboard. Pada penelitian ini dibuat sebuah sistem yang dapat mendeteksi mobil dan mengenali merek dari mobil yang terdeteksi, sehingga materi iklan dapat berubah sesuai dengan merek mobil yang dikenali oleh sistem. Untuk deteksi pada mobil digunakan metode You Only Look Once (YOLO) dan untuk klasifikasi pada merek mobil digunakan metode MiniVGGNet. Proses latih dilakukan dengan menggunakan 1100 buah gambar dan terdapat 11 macam merek mobil yang dapat diklasifikasikan. Dari pengujian yang dilakukan, didapatkan akurasi akhir 93% pada deteksi mobil. Untuk klasifikasi dari merek mobil dilakukan pengujian dengan fungsi optimasi Adam dengan ukuran masukan gambar 64x64 piksel. Untuk akurasi terbaik yang didapatkan adalah 60%.AbstractThe world of advertising in Indonesia today has a very rapid development. This is proven by the increasing number of advertising media created, one example is billboard advertising on the highway. Billboard advertising has a weakness, namely the material or the content of the ads displayed cannot change, therefore the target of advertising cannot be directed at the right consumer. To overcome this problem, the use of technology is needed to support the effectiveness of billboard advertising. In this study a system was created which is can detect the car and recognize the brand of the car detected, so the advertising material can change according to the brand of the car that is recognized by the system. For the detection of cars, using You Only Look Once (YOLO) method and for the classification of car brands, using MiniVGGNet method. The training process is carried out using 1100 pictures and there are 11 kinds of car brands that can be classified. From the tests performed, 93% final accuracy was found in car detection. The classification of the car brand was tested with Adam optimization functions with an image input size of 64x64 pixels. For the best accuracy obtained is 60% using the Adam optimization function with the input image size of 64x64 pixels.
Rancang Bangun Aplikasi Berbasis Android untuk Perbaikan Kualitas Citra Tanaman Atas Perbedaan Spesifikasi Kamera Smartphone pada Prediksi Kandungan Pigmen Fotosintesis Secara Real-Time Tjokro Atmodjo, Felix Adrian; Prilianti, Kestrilia Rega; Setiawan, Hendry
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022976771

Abstract

Pigmen utama yang berperan penting pada fotosintesis, yaitu klorofil, karotenoid dan antosianin dapat dianalisis kandungannya untuk menentukan status kesehatan tanaman. Metode analisis kandungan pigmen yang dilakukan secara destruktif memerlukan penanganan khusus dan biaya yang tinggi. Fuzzy Piction adalah aplikasi Android yang telah dikembangkan sebelumnya untuk prediksi kandungan pigmen utama pada tanaman. Aplikasi tersebut mempunyai kemampuan untuk melakukan prediksi kandungan pigmen pada citra daun secara non-destruktif dengan menggunakan model Convolutional Neural Network (CNN) FP3Net. Namun, Fuzzy Piction masih belum invarian terhadap perbedaan kualitas citra yang dapat terjadi karena perbedaan kualitas atau spesifikasi kamera smartphone. Hal ini ditunjukkan dengan adanya perbedaan hasil prediksi kandungan pigmen pada beberapa smartphone untuk objek daun yang sama. Pada penelitian ini dikembangkan metode perbaikan citra dengan algoritma Partial Least Square Regression (PLSR) sebagai solusi atas permasalahan tersebut. Dengan penambahan metode perbaikan citra, aplikasi Fuzzy Piction dapat memberikan prediksi kandungan pigmen dengan tingkat presisi yang lebih baik. Aplikasi Fuzzy Piction difasilitasi dengan layanan cloud yang dikembangkan menggunakan Flask web service sehingga model perbaikan citra dan prediksi pigmen lebih mudah diperbarui. Hasil perbaikan warna oleh PLSR berhasil menyeragamkan warna citra serta dapat memberikan hasil prediksi kandungan pigmen dengan standar deviasi yang lebih kecil. Variasi prediksi kandungan pigmen dengan 3 jenis smartphone yang berbeda pada objek daun yang sama  dapat diturunkan sebesar 87% setelah citra asal diperbaiki dengan PLSR.AbstractChlorophyll, carotenoids, and anthocyanins are three main pigments that are important for photosynthesis process. Its content can be examined to determine the status of plants health. The destructive approach of evaluating pigment content is expensive and necessitates specialized handling. An Android based application called Fuzzy Piction could predict the content of those pigments nondestructively using the FP3Net, a Convolutional Neural Network (CNN) model. This application predicts the pigment content in plant leaf by its digital images. However, Fuzzy Piction is still not invariant to differences in image quality that can occur due to differences in smartphone camera specifications. This is indicated by the difference in the prediction results of the pigment content on several smartphones for the same leaf object. Therefore, the Partial Least Square Regression (PLSR) technique was used in this work as an image enhancement method to resolve the issue. Eventually, Fuzzy Piction may provide precise predictions of pigment content by embedding PLSR in it. A cloud service made with the Flask web service makes it easy to update the image enhancement and pigment prediction models for the Fuzzy Piction application. The results of color correction by PLSR succeeded in uniforming the color of the image and could provide predictive results of pigment content with a smaller standard deviation. The variation of pigment content prediction with 3 different smartphone types on the same leaf object can be reduced by 87% after the original image is corrected with PLSR.
Metode Deteksi Pokok Pohon Secara Automatis pada Citra Perkebunan Sawit Menggunakan Model Convolutional Neural Network (CNN) pada Perangkat Lunak Sistem Informasi Geografis Samuel, Samuel; Prilianti, Kestrilia Rega; Setiawan, Hendry; Mimboro, Prasetyo
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022976772

Abstract

Perkebunan sawit merupakan salah satu bisnis yang diminati oleh industri baik di dalam maupun luar negeri. Perkebunan sawit di Indonesia dengan lahan yang sangat luas merupakan sumber pendapatan negara yang potensial. Namun, proses monitoring menjadi tantangan tersendiri jika dilakukan secara manual. Oleh karena itu diperlukan terobosan inovasi agar proses monitoring dapat dilakukan secara efisien namun tetap akurat. Teknologi penginderaan jauh dapat diterapkan sebagai solusi. Dengan menggunakan Unmanned Aerial Vehicle (UAV) citra perkebunan dapat direkam. Selanjutnya dengan implementasi pengolahan citra digital dan kecerdasan buatan, citra dapat dimanfaatkan untuk melakukan monitoring berdasarkan warna dari pohon sawit. Tahap pertama yang diperlukan dalam akuisisi data untuk berbagai keperluan monitoring adalah deteksi pokok pohon sawit secara automatis. Pada penelitian ini didemonstrasikan penggunaan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet-34 dan ResNet-50 untuk membangun model deteksi pokok pohon sawit dari citra UAV perkebunan sawit PTPN IV. Tujuan deteksi pokok pohon adalah untuk melakukan analisis lanjutan terkait kondisi pohon sawit seperti status nutrisi, kesiapan panen dan indikasi adanya serangan penyakit. Model ResNet yang telah dilatih berhasil melakukan proses deteksi pokok pohon sawit secara automatis dengan akurasi training sebesar 84% dan akurasi testing rata-rata sebesar 71%. Metode deteksi diterapkan dengan menggunakan perangkat lunak sistem informasi geografis. AbstractOil palm plantations are one of the businesses that are in demand by both local and international industries. Oil palm plantations in Indonesia with very large lands are a very potential source of income for the country. However, the monitoring process related to disease attack and nutritional status becomes a challenge if it is done manually. Therefore, innovation breakthroughs are needed so that the monitoring process can be carried out efficiently but still accurately. Remote sensing technology can be applied as a solution. By using Unmanned Aerial Vehicle (UAV) plantation images can be recorded. Furthermore, with the implementation of digital image processing and artificial intelligence, the image can be used to monitor based on the color of the palm tree. The first step needed in image processing for various monitoring purposes is the automatic detection of oil palm trees. This study demonstrates the use of the Convolutional Neural Network (CNN) method with the ResNet-34 and ResNet-50 architectures to build a palm tree principal detection model from UAV images of PTPN IV oil palm plantations. The purpose of tree detection is to carry out further analysis related to the condition of oil palm trees such as nutritional status, harvest readiness and indications of disease attacks.. The ResNet model that has been trained has successfully carried out the process of detecting oil palm trees automatically with training accuracy of 84%, testing accuracy of 73% and 69%. The detection method is applied using geographic information system software.