Articles
Algoritme Sweep dan Particle Swarm Optimization dalam Optimisasi Rute Kendaraan dengan Kapasitas
Bib Paruhum Silalahi;
Khoerul Fatihin;
Prapto Tri Supriyo;
Sugi Guritman
Jurnal Matematika Integratif Vol 16, No 1: April 2020
Publisher : Department of Matematics, Universitas Padjadjaran
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1267.18 KB)
|
DOI: 10.24198/jmi.v16.n1.27474.29-40
Masalah rute kendaraan dengan kapasitas (capacitated vehicle routing problem) adalah variasi dari masalah rute kendaraan (vehicle routing problem). Pada masalah rute kendaraan dengan kapasitas, kendaraan yang digunakan untuk distribusi produk memiliki batas daya angkut. Menentukan solusi optimal dari masalah rute kendaraan dan perluasannya adalah NP-Hard. Oleh karena itu untuk menyelesaikan masalah rute kendaraan dengan kapasitas ini banyak dikembangkan algoritme heuristik. Dalam paper ini, untuk mencari solusi masalah rute kendaraan dengan kapasitas, digunakan gabungan dua algoritme heuristik. Penyelesaian masalah dimulai dengan pembentukan kelompok (clustering) menggunakan algoritme sweep, kemudian setiap kelompok hasil algoritme sweep dioptimalkan menggunakan algoritme particle swarm optimization.
Kasus-kasus Buruk Penggunaan Metode Titik Interior pada Optimisasi Linear
Bib Paruhum Sialalahi
Jurnal Matematika Integratif Vol 10, No 1: April, 2014
Publisher : Department of Matematics, Universitas Padjadjaran
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (419.536 KB)
|
DOI: 10.24198/jmi.v10.n1.10180.9-18
Metode titik interior adalah suatu metode dengan waktu polinomial dalam menyelesaikan masalah optimisasi linear. Metode titik interior sering menggunakan central path sebagai panduan menuju solusi optimalnya. Pada paper ini diberikan suatu teorema yang menyatakan bahwasanya kendala redundan dapat mengubah pusat analitik central path yang sekaligus mengubah central path. Dengan bantuan teorema ini ditampilkan suatu kasus dimana metode titik interior berunjuk kerja buruk dengan adanya kendala redundan. Kemudian disajikan suatu masalah optimisasi linear yang memiliki central path dengan pola zigzag. Pola zigzag pada central path juga mengakibatkan metode titik interior bekerja lebih lama dalam menuju solusi optimal.
Texture Analysis of Citrus Leaf Images Using BEMD for Huanglongbing Disease Diagnosis
Sumanto;
Agus Buono;
Karlisa Priandana;
Bib Paruhum Silalahi;
Elisabeth Sri Hendrastuti
JOIN (Jurnal Online Informatika) Vol 8 No 1 (2023)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.15575/join.v8i1.1075
Plant diseases significantly threaten agricultural productivity, necessitating accurate identification and classification of plant lesions for improved crop quality. Citrus plants, belonging to the Rutaceae family, are highly susceptible to diseases such as citrus canker, black spot, and the devastating Huanglongbing (HLB) disease. Traditional approaches for disease detection rely on expert knowledge and time-consuming laboratory tests, which hinder rapid and effective disease management. Therefore, this study explores an alternative method that combines the Bidimensional Empirical Mode Decomposition (BEMD) algorithm for texture feature extraction and Support Vector Machine (SVM) classification to improve HLB diagnosis. The BEMD algorithm decomposes citrus leaf images into Intrinsic Mode Functions (IMFs) and a residue component. Classification experiments were conducted using SVM on the IMFs and residue features. The results of the classification experiments demonstrate the effectiveness of the proposed method. The achieved classification accuracies, ranging from 61% to 77% for different numbers of classes, the results show that the residue component achieved the highest classification accuracy, outperforming the IMF features. The combination of the BEMD algorithm and SVM classification presents a promising approach for accurate HLB diagnosis, surpassing the performance of previous studies that utilized GLCM-SVM techniques. This research contributes to developing efficient and reliable methods for early detection and classification of HLB-infected plants, essential for effective disease management and maintaining agricultural productivity.
PENERAPAN ALGORITMA GENETIKA DENGAN METODE ROULETTE WHEEL DAN REPLACEMENT PADA OPTIMASI OMZET
Hidayatul Mayyani;
Marisa Nurbaiti;
Prapto Tri Supriyo;
Amril Aman;
Bib Paruhum Silalahi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.29244/milang.19.2.153-172
Perhitungan masalah memaksimumkan omzet serta analisis yang tepat terhadap proses produksi diperlukan untuk meningkatkan pendapatan perusahaan. Permasalahan memaksimumkan omzet ini dapat diselesaikan dengan algoritma genetika. Terdapat banyak metode seleksi dalam algoritma genetika, dua di antaranya ialah roulette wheel dan replacement. Penelitian dilakukan untuk mencari metode seleksi terbaik berdasarkan rata-rata nilai fitness yang dihasilkan. Penelitian ini ditinjau berdasarkan tiga kasus yang berbeda dalam membandingkan kedua metode seleksi yang diuji, kasus pertama menggunakan ukuran populasi 10 dan banyak generasi juga 10, kasus kedua menggunakan ukuran populasi 25 dan banyak generasi 10, sedangkan kasus ketiga menggunakan ukuran populasi 10 dan banyak generasi 50. Ketiga kasus tersebut menggunakan parameter tetap yaitu crossover rate 0,8 dan mutation rate 0,1. Dari penelitian ini didapatkan bahwa metode replacement lebih baik dari metode roulette wheel.
METODE KONJUGAT GRADIEN HIBRID BARU: METODE HS-CD UNTUK MENYELESAIKAN MASALAH OPTIMASI TAK BERKENDALA
Saputra, T Murdani;
Silalahi, Bib Paruhum;
Guritman, Sugi
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 8 No 1 (2020): Volume 8 Nomor 1
Publisher : Universitas Islam Negeri Alauddin Makassar
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24252/msa.v8i1.12294
Metode konjugat gradien adalah salah satu metode yang efektif dalam menyelesaikan permasalahan optimasi tak-berkendala dan metode ini juga termasuk salah satu metode iteratif. Pada tulisan ini, peneliti mengusulkan metode konjugat gradien hibrid baru yaitu metode new hybrid 4 yang merupakan gabungan antara metode Hestenes dan Stiefel – Conjugate Descent, dimana metode tersebut diusulkan berdasarkan ide dari metode yang telah diusulkan sebelumnya yaitu metode Polak, Ribiѐre dan Polyak - Fletcher dan Reeves atau metode NH1, metode Hestenes dan Stiefel – Dai dan Yuan atau metode NH2 dan metode Liu dan Storey – Conjugate Descent (NH3). Peneliti mengusulkan metode tersebut dengan menggabungkan antara metode HS dan CD, dimana metode tersebut memiliki kekurangan masing-masing. Dalam penelitian ini, peneliti membandingkan hasil numerik antara metode baru yaitu Metode HS-CD (NH4) dengan metode-metode sebelumnya serta membuktikan bahwa memenuhi sifat konvergen global dan memenuhi kondisi descent setiap iterasinya. Hasil numerik menunjukkan bahwa metode baru adalah sangat efisien dalam menyelesaikan fungsi nonlinear tak-berkendala. Metode tersebut juga terbukti memenuhi sifat konvergen global menggunakan kondisi Wolfe serta memenuhi kondisi descent di setiap iterasinya.
OPTIMALISASI LABA PADA PRODUKSI OLAHAN RUMPUT LAUT: STUDI KASUS POKLAHSAR SINAR PAGI SUMBAWA BARAT
Brigitha, Nabilah Diar;
Silalahi, Bib Paruhum;
Supriyo, Prapto Tri;
Mayyani, Hidayatul
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 14 No 2 (2022): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.20884/1.jmp.2022.14.2.6942
ABSTRACT. Poklahsar Sinar Pagi still performs manual calculations for prices and estimates the number of products produced. This allows the profits obtained are not maximized. Optimization is needed, namely determining the minimum production cost capital or obtaining maximum profit with limited available capacity in order to achieve optimal results. To achieve this optimization, an appropriate method is needed. The simplex method is one of the optimization methods. The simplex method is an iteration with the same calculation steps repeated many times before finding the optimum solution. In solving problems using the simplex method, the steps that must be taken are to determine the decision variables, the objective function, and the constraints. Poklahsar Sinar Pagi problem is solved with the simplex method by using POM QM software for windows V5 to find the optimal solution.Keywords: Optimization, POM QM, Simplex Method. ABSTRAK. Poklahsar Sinar Pagi masih melakukan perhitungan secara manual untuk harga serta perkiraan jumlah produk yang diproduksi. Hal ini memungkinkan keuntungan yang diperoleh belum maksimal. Diperlukan optimalisasi yaitu penentuan modal biaya produksi minimum atau mendapatkan keuntungan maksimum dengan keterbatasan kapasitas yang tersedia agar mencapai hasil yang optimal. Dalam mencapai pengoptimalan tersebut dibutuhkan suatu metode yang tepat. Metode simpleks merupakan salah satu metode dari optimalisasi. Metode simpleks adalah perhitungan berulang-ulang (iterasi) dengan langkah-langkah perhitungan yang sama diulang berkali-kali sebelum ditemukan solusi optimum. Dalam memecahkan masalah menggunakan metode simpleks langkah yang harus dilakukan yaitu menentukan variabel keputusan, fungsi tujuan dan kendala-kendala. Masalah Poklahsar Sinar Pagi diselesaikan dengan metode simpleks menggunakan bantuan perangkat lunak POM QM for windows V5 dalam menemukan solusi optimal.Kata Kunci: Metode Simpleks, Optimalisasi, POM QM.
Algoritme Migrating Birds Optimization dan Algoritme Particle Swarm Optimization: Penyelesaian Masalah Knapsack 0-1
Silalahi, Bib Paruhum;
Novanto, Mohamad;
Supriyo, Prapto Tri
PYTHAGORAS Jurnal Matematika dan Pendidikan Matematika Vol. 17 No. 1: June 2022
Publisher : Department of Mathematics Education, Faculty of Mathematics and Natural Sciences, UNY
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21831/pythagoras.v17i1.35660
Permasalahan knapsack merupakan salah satu masalah optimisasi. Masalah knapsack merupakan suatu permasalahan bagaimana memilih objek dari beberapa objek yang akan dimasukkan ke media penyimpanan dengan masing-masing objek memiliki bobot dan total bobot dari objek yang dipilih tidak boleh melebihi kapasitas media penyimpanannya, sehingga diperoleh nilai yang maksimal. Ketika objek yang dimasukkan ke dalam media penyimpanan bersifat harus dimasukkan semua atau tidak sama sekali, permasalahan ini dikenal dengan nama knapsack 0-1. Salah satu metode penyelesaian masalah knapsack 0-1 adalah dengan menggunakan metode meta-heuristic. Terdapat beberapa metode meta-heuristic seperti algoritma migrating birds optimization dan particle swarm optimization. Paper ini membahas bagaimana algoritma migrating birds optimization dan particle swarm optimization digunakan dalam menyelesaikan permasalahan knapsack 0-1. Kemudian dilakukan perbandingan kinerja kedua algoritma tersebut berdasarkan nilai fungsi tujuan untuk beberapa studi kasus. Berdasarkan hasil penelitian ini algoritme migrating birds optimization mempunyai nilai hasil fungsi objektif yang lebih baik dibandingkan dengan algoritma particle swarm optimization.Migrating Birds Optimization Algorithm and Particle Swarm Optimization Algorithm: Knapsack problem solving 0-1AbstractThe knapsack problem is one of the optimization problems. The knapsack problem is a problem of how to select objects from several objects to be inserted into the storage with each object having a weight and the total weight of the selected object must not exceed the capacity of the storage so that the maximum value is obtained. When objects that are inserted into the storage have the character of having to be included all or nothing, this problem is known as the 0-1 knapsack. One of the methods of solving the 0-1 knapsack problem is by using the meta-heuristic method. There are several meta-heuristic methods such as the migrating birds optimization algorithm and particle swarm optimization. This paper discusses how migrating birds optimization and particle swarm optimization algorithms are used to solve the 0-1 knapsack problem. Then the performance of the two algorithms is compared based on the objective function values for several case studies. Based on the results of this study, the migrating birds optimization algorithm has better objective function values than the particle swarm optimization algorithm.
Confidence Intervals for the Mean Function of a Compound Cyclic Poisson Process in the Presence of Power Function Trend
Muhammad, Faisal;
Mangku, I Wayan;
Silalahi, Bib Paruhum
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.18860/ca.v7i3.15989
We consider the problem of estimating the mean function of a compound cyclic Poisson process in the presence of power function trend. The objectives of this paper are: (i) to construct confidence interval for the mean function of a compound cyclic Poisson process with significance level , (ii) to prove that the probability that the mean function contained in the confidence interval converges to , and (iii) to observe, using simulation study, that the probabilities of the mean function contained in the confidence intervals for bounded length of observation interval. The main results are a confidence interval for the mean function and a theorem about convergence of the probability that the mean function contained in confidence interval. The simulation study shows that the probability that the mean function contained in the confidence interval is in accordance with the theorem. The contribution of this study is to provide information for users regarding confidence interval for the mean function of a compound cyclic Poisson process in the presence of power function trend.
Determination of Critical Node in The Java Sumatra Kalimantan Submarine Cable Communication System
Rachmadini, Haliza Suci;
Aman, Amril;
Paruhum Silalahi, Bib
Mathline : Jurnal Matematika dan Pendidikan Matematika Vol. 8 No. 2 (2023): Mathline: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas Wiralodra
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31943/mathline.v8i2.422
Disruption of the Java Sumatra Kalimantan (Jasuka) submarine cable communication system significantly impacted the smooth flow of communications. To reduce the impact, the detection of critical nodes in the network uses the critical node detection method to identify the most important nodes in the Jasuka network. This study aims to apply the critical node detection method as integer linear programming on the Jasuka network to obtain critical nodes by minimizing the number of paired connections on the nodes. The data in this research comes from the Jasuka network, represented as nodes and edges, and then analyzed using Python 3.11 software. The results showed that the critical node of the Jasuka submarine cable communication system is located at index 5 and 14 or the landing point Dumai, Riau and Palembang Jambi. The critical node on the Jasuka network can be a reference for Telkom Indonesia to pay special attention to the landing point because the damage will impact the entire network.
Konstruksi Persegi Ajaib dengan Entri Bilangan Bulat
Mu'min, Ulil Albab;
Silalahi, Bib Paruhum
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 6 No 2 (2021): September 2021 - February 2022
Publisher : Prodi Pendidikan Matematika Universitas Pesantren Tinggi Darul Ulum Jombang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26594/jmpm.v6i2.2228
Persegi ajaib adalah kotak-kotak persegi berisi bilangan berbeda yang disusun sedemikian rupa sehingga jumlah bilangan-bilangan pada baris, kolom, dan diagonal adalah sama. Penelitian ini membahas tentang pola dan algoritma untuk menyusun persegi ajaib berukuran m x m dari rangkaian m^2 bilangan bulat berurutan. Konstruksi algoritma dibagi menjadi tiga kasus, yaitu: algoritma persegi ajaib ordo ganjil (2j + 1) x (2j + 1), algoritma persegi ajaib ordo genap (4j) x (4j), dan algoritma persegi ajaib ordo genap (4j + 2) x (4j + 2) dengan j = 1, 2, ..., m.