Claim Missing Document
Check
Articles

Found 22 Documents
Search

Characteristic of Near Ring From Group Object of Categories Puspita, N P; SRRM, Titi Udjiani; Suryoto, S; Irawanto, B
Indonesian Journal of Mathematics and Natural Sciences Vol 40, No 1 (2017): April 2017
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Setiap objek pada kategori dengan objek terminal dan produk disebut grup objek jika memiliki beberapa aksioma seperti aksioma grup tetapi didefinisikan oleh diagram komutatif. Aksioma-aksioma tersebut seperti asosiatif, eksistensi elemen identitas dan elemen invers. Untuk setiap objek kelompok G, himpunan endomorfisme dari G ke G dilambangkan dengan Hom (G, G). Hom (G, G) berada tepat di dekat ring pada opersai penjumlahan Å dan operasi  perkalian °. Dalam penelitian ini kami menunjukkan bahwa Hom (G, G) dapat dipertimbangkan sebagai cincin B1 di dekat kedua operasi tersebut.Every object on category with terminal object and product is called group object if its have some axioms like group axioms but defined by comutative diagram. Its axioms such as associative, existence identity element and invers element. For any group object G, set of endomorphism from G to G denoted by Hom(G,G). Hom(G,G) is right near ring over addition operation Å and multiplication operation °. In this research we shown that Hom(G,G) can be considering as B1- near ring over both operation.
MOTIVASI DEFINISI INVERS MOORE PENROSE PADA RING DENGAN ELEMEN SATUAN YANG DILENGKAPI INVOLUSI SRRM, Titi Udjiani
MATEMATIKA Vol 19, No 1 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (29.755 KB)

Abstract

Development on the research of the  inverse  matrix until the Moore Penrose inverse matrix motivate researchers to conduct the research on the Moore Penrose inverse and the inverse of element in the ring with a unit element. The  used method  is  expanding the definition of   inverse in matrix to the ring with a unit element. Also  generalizing the  transpose  operation of matrix to  be a function of involution on the ring.
MATRIKS INVERS MOORE PENROSE ATAS DAERAH INTEGRAL SRRM, Titi udjiani
MATEMATIKA Vol 2, No 8 (2005): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (74.134 KB)

Abstract

The Inverse Moore Penrose matrix has been applied in various areas, for example in statistic and optimization. In this paper we study Inverse Moore Penrose matrix which is applied to Integral Domain. We will first discuss the characterization of all matrices over Integral Domain which admits Moore Penrose Inverse. With this characterization we will derive  necessary and sufficient conditions for a matrix to have a Moore Penrose Inverse. We also show the relations between Moore Penrose Inverse matrix and Compound matrix. The aim of this paper is to obtain an explicit formula for the Moore Penrose Inverse when it exist and gives a necessary and sufficient condition for a matrix to have a Moore Penrose Inverse under the assumption that a matrix has a rank factorization.  
SISTEM PERSAMAAN LINEAR ATAS RING KOMUTATIF SRRM, Titi udjiani
MATEMATIKA Vol 9, No 3 (2006): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (74.198 KB)

Abstract

Linear systems  equations over commutatif ring are linear systems  equations with the coeffici-ents of these equations are elements from commutatif ring. This paper discusses about basic theorems on solution of linear systems equations over commutatif ring. The basic theorems will be found by using characteristic of ideal ,annihilator and rank of coefficient matrices of linear systems equations over commutatif ring. The ideal  is generated by minors of coefficient matrices of linear systems equations over commutatif ring. Computing the annihilator of ideal we get the rank of coefficient matrices of linear systems equations over commutatif ring
MODEL OPTIMASI ECONOMIC ORDER QUANTITY DENGAN SISTEM PARSIAL BACKORDER DAN INCREMENTAL DISCOUNT Nurhayati, Neri; Puspita, Nikken Prima; SRRM, Titi Udjiani
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.451 KB)

Abstract

Economic Order Quantity model with partial backorder system and incremental discount is an integration of several model of inventory optimation, they were Economic Order Quantity optimation model, Economic Order Quantity optimation model with partial backorder system and Economic Order Quantity optimation model with incremental discount. Beside the discounts are given by supplier, in this model there were two stockout conditions, where the consumers disposed to wait until the order came and consumers did not disposed to wait until the order came. 
APLIKASI INVERS GRUP PADA KARAKTERISASI INVERS MOORE PENROSE SRRM, Titi Udjiani
MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (151.761 KB)

Abstract

Let  be a ring with identity and equipped with  involution " ". If  is element of  and has the Moore Penrose inverse, then  and  also have the  Moore Penrose inverse. This paper  found thatMoore Penrose inverse of is the same with the group inverse of   Also the Moore Penrose inverse of  is the same with the group inverse of Then the results of this  investigation  are  used to   discusse the characteristic of the Moore Penrose inverse of elements in  through the group inverse .
MATRIKS INVERS MOORE-PENROSE DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER R., IDA M.; Udjiani, Titi
MATEMATIKA Vol 12, No 2 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4.961 KB)

Abstract

In this paper we define and study about The Moore Penrose Inverse of any matrices under the rank. We apply our result to study of Solution Linear Equation Sistem  
INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN SRRM, Titi udjiani
MATEMATIKA Vol 7, No 1 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (63.422 KB)

Abstract

Jika A adalah matriks  dengan elemen Ring komutatif dengan elemen satuan yang berukuran mxn maka matriks invers  dari A yang disebut dengan matriks invers Moore Penrose dari A ditulis G(A) dapat diperoleh dengan memenuhi syarat perlu dan cukup agar G(A) merupakan invers Moore Penrose dari A
SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB Suryoto, Suryoto; Harjito, Harjito; Udjiani, Titi; Puspita, Nikken Prima
MATEMATIKA Vol 20, No 2 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.178 KB)

Abstract

Penelitian ini membahas sifat-sifat dasar dari persegi ajaib dan struktur aljabar dari himpunan semua matriks penyajian dari persegi ajaib berordo . Struktur aljabar yang dapat dibentuk dari himpunan matriks persegi ini antara lain berupa grup komutatif terhadap operasi penjumlahan matriks, modul atas daerah bilangan bulat , dan juga merupakan ruang vektor (atas lapangan rasional ℚ, lapangan real ℝ maupun lapangan kompleks ℂ). Diberikan pula nilai karakteristik dari matriks persegi ajaib salah satunya adalah konstanta ajaib dari matriks persegi ajaib yang bersangkutan.
Average Based-FTS Markov Chain Based on a Modified Frequency Density Partitioning to Predict COVID-19 in Central Java Hariyanto, Susilo; Zaenurrohman, Zaenurrohman; SRRM, Titi Udjiani
CAUCHY Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi (May 2022) (Issue in Progress)
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i2.13371

Abstract

COVID-19 is still a pandemic in Indonesia, and Central Java is no exception. New positive cases of COVID-19 in Central Java are being discovered every day. Therefore, researchers try to predict new positive cases in Central Java. Many forecasting methods are currently developing, one of which is fuzzy time series (FTS). FTS has been also developed until now, one of which is a development of the FTS by combining the Markov chain as a defuzzification process. In FTS there is no definite formula to determine the length of the interval, so the researcher uses an average based to determine the length of the interval in the FTS Markov chain. Next, the researcher repartitioned based on the modified frequency density. The results of this study are that forecasting new positive cases of COVID-19 in Central Java using the average based-FTS Markov chain based on a modified frequency density partitioning method has a good level of accuracy, this can be seen from the MAPE value of the method.