Claim Missing Document
Check
Articles

Found 19 Documents
Search

Analisa Kestabilan dan Solusi Pendekatan Pada Persamaan Van der Pol Yuni Yulida; Muhammad Ahsar Karim
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 3, No 2 (2019): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2719.307 KB) | DOI: 10.31764/jtam.v3i2.1084

Abstract

Abstrak: Di dalam tulisan ini disajikan analisa kestabilan, diselidiki eksistensi dan kestabilan limit cycle, dan ditentukan solusi pendekatan dengan menggunakan metode multiple scale dari persamaan Van der Pol. Penelitian ini dilakukan dalam tiga tahapan metode. Pertama, menganalisa perilaku dinamik persamaan Van der Pol di sekitar ekuilibrium, meliputi transformasi persamaan ke sistem persamaan, analisa kestabilan persamaan melalui linearisasi, dan analisa kemungkinan terjadinya bifukasi pada persamaan. Kedua, membuktikan eksistensi dan kestabilan limit cycle dari persamaan Van der Pol dengan menggunakan teorema Lienard. Ketiga, menentukan solusi pendekatan dari persamaan Van der Pol dengan menggunakan metode multiple scale. Hasil penelitian adalah, berdasarkan variasi nilai parameter kekuatan redaman, daerah kestabilan dari persamaan Van der Pol terbagi menjadi tiga. Untuk parameter kekuatan redaman bernilai positif mengakibatkan ekuilibrium tidak stabil, dan sebaliknya, untuk parameter kekuatan redaman bernilai negatif mengakibatkan ekuilibrium stabil asimtotik, serta tanpa kekuatan redaman mengakibatkan ekuilibrium stabil. Pada kondisi tanpa kekuatan redaman, persamaan Van der Pol memiliki solusi periodik dan mengalami bifurkasi hopf. Selain itu, dengan menggunakan teorema Lienard dapat dibuktikan bahwa solusi periodik dari persamaan Van der Pol berupa limit cycle yang stabil. Pada akhirnya, dengan menggunakan metode multiple scale dan memberikan variasi nilai amplitudo awal dapat ditunjukkan bahwa solusi persamaan Van der Pol konvergen ke solusi periodik dengan periode dua. Abstract: In this paper, the stability analysis is given, the existence and stability of the limit cycle are investigated, and the approach solution is determined using the multiple scale method of the Van der Pol equation. This research was conducted in three stages of method. First, analyzing the dynamic behavior of the equation around the equilibrium, including the transformation of equations into a system of equations, analysis of the stability of equations through linearization, and analysis of the possibility of bifurcation of the equations. Second, the existence and stability of the limit cycle of the equation are proved using the Lienard theorem. Third, the approach solution of the Van der Pol equation is determined using the multiple scale method. Our results, based on variations in the values of the damping strength parameters, the stability region of the Van der Pol equation is divided into three types. For the positive value, it is resulting in unstable equilibrium, and contrary, for the negative value, it is resulting in asymptotic stable equilibrium, and without the damping force, it is resulting in stable equilibrium. In conditions without damping force, the Van der Pol equation has a periodic solution and has hopf bifurcation. In addition, by using the Lienard theorem, it is proven that the periodic solution is a stable limit cycle. Finally, by using the multiple scale method with varying the initial amplitude values, it is shown that the solution of the Van der Pol equation is converge to a periodic solution with a period of two.
Belajar dari Rumah: Pelatihan Kompetisi Sains Nasional Tingkat SMP Bidang Matematika di Masa Pandemi Muhammad Ahsar Karim; Yuni Yulida; Muhammad Mahfuzh Shiddiq; Miftahul Jannah; Gian Septiansyah
Bubungan Tinggi: Jurnal Pengabdian Masyarakat Vol 4, No 1 (2022)
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/btjpm.v4i1.4712

Abstract

Kegiatan Pengabdian pada Masyarakat ini berbentuk pelatihan online dan bertujuan untuk berbagi pengetahuan tentang teknis pelaksanaan, silabus, serta tips dan trik di dalam menyelesaikan soal-soal pada Kompetisi Sains Nasional (KSN) tingkat SMP di bidang Matematika. Kegiatan ini dilakukan selama dua hari pada bulan Juli tahun 2021. Peserta kegiatan ini adalah para guru matematika dan siswa-siswi di SMP IT Qardhan Hasana, Kota Banjarbaru, Provinsi Kalimantan Selatan, yang terdiri dari 3 orang guru matematika dan 74 orang siswa. Pelatihan ini berjalan lancar dan dapat menjadi solusi bagi sulitnya pelaksanaan kegiatan pelatihan KSN di sekolah di masa pandemi Covid-19. Metode yang digunakan diantaranya adalah ceramah, diskusi, dan latihan soal. Hasil kegiatan ini, pemateri memberikan teknik-teknik dalam menyelesaikan soal-soal KSN diantaranya adalah mencari pola, menggunakan variabel, melangkah mundur, dan menggunakan ilustrasi. Dari kegiatan ini, panitia mengidentifikasi 10 dari 74 orang siswa yang berbakat dan merekomendasikan ke pihak sekolah untuk dibina lebih lanjut untuk mengikuti KSN Bidang Matematika. Hal ini sesuai dengan ketentuan KSN tahun 2021, yaitu setiap sekolah diwakili maksimal 9 (sembilan) peserta. Setiap peserta hanya diperbolehkan mengikuti 1 (satu) bidang lomba dan setiap bidang lomba maksimal 3 (tiga) peserta. Selanjutnya, kegiatan ini dapat dimanfaatkan dan dikembangkan oleh para guru matematika di sekolah tersebut untuk melakukan pembinaan kepada para siswa di dalam menghadapi KSN bidang Matematika. Pihak SMP IT Qardhan Hasana mengharapkan agar kegiatan ini dapat dilaksanakan secara rutin setiap tahun dalam bentuk kerja sama antara pihak sekolah dengan pihak Program Studi Matematika FMIPA ULM. This Community Service activity is in the form of online training. It aims to share knowledge about technical implementation, syllabus, and tips and tricks in solving problems in the National Science Competition (NCS) for junior high school mathematics. This activity was carried out for two days in July 2021. Participants in this activity were mathematics teachers and students at SMP IT Qardhan Hasana, Banjarbaru City, Province of South Kalimantan, which consisted of 3 mathematics teachers and 74 students. This training ran smoothly and could be a solution to the difficulty of implementing KSN training activities in schools during the Covid-19 pandemic. The methods used include lectures, discussions, and practice questions. The results of this activity show that the presenters provide techniques for solving KSN questions, including looking for patterns, using variables, stepping back, and using illustrations. The committee identified 10 out of 74 gifted students from this activity and recommended the school be further nurtured to participate in KSN in Mathematics. This is following the provisions of the 2021 KSN, which is that each school is represented by a maximum of 9 (nine) participants. Each participant is only allowed to participate in 1 (one) competition field, and each competition field is a maximum of 3 (three) participants. Furthermore, this activity can be utilized and developed by mathematics teachers at the school to guide students in facing KSN in the field of Mathematics. The SMP IT Qardhan Hasana hopes that this activity can be carried out regularly every year in collaboration between the school and the Study Program of Mathematics, FMIPA ULM. 
APLIKASI PERSAMAAN GELOMBANG UNTUK MENENTUKAN KARAKTERISTIK GELOMBANG SENAR GITAR YANG DIPETIK Yuni Yulida; Haidir Ahsana; Muhammad Mahfuzh Shiddiq; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.422 KB) | DOI: 10.20527/epsilon.v15i2.4735

Abstract

Partial differential equations are often used to explain physical phenomena, one of which is the wave equation. One application of the wave equation is in plucked strings. This study describes the formation of a wave equation from guitar strings, determines the solution to the wave equation by using the variable separation method and certain boundary conditions and initial conditions, determines the amplitude of the wave, and simulates the movement of the wave based on the initial position of the plucked string. The result obtained is the wave equation of the guitar strings. When the string is plucked, the string will vibrate and produce a wave that can be formulated as a wave equation in the form of a homogeneous second order partial differential equation. The solution to this equation is in the form of a series. If given the initial conditions of plucking in the form of a function, then the amplitude of the wave is obtained. Simulations are given to see the movement of the amplitude and wave on the strings through three cases of the initial position of plucking the strings, namely: less than half, half, and more than half the length of the strings. The behavior of these amplitudes and waves is a characteristic or characteristic of the waves produced from a plucked guitar string
PEMETAAN LINIER KONTINU PADA RUANG BERNORMA KABUR Muhammad Ahsar Karim; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 3, No 2 (2009): JURNAL EPSILON VOLUME 3 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (210.042 KB) | DOI: 10.20527/epsilon.v3i2.42

Abstract

In metric space we have known about linear mapping and continuousmapping. Both of the mappings have the important properties in normed space. Inthis paper, we study the properties on fuzzy normed space. We start our resultswith first to show that the fuzzy normed space is fuzzy metric space. Then, wedefine the fuzzy continuous mapping and the fuzzy bounded set on fuzzy normedspace. Moreover, we construct the generalisation of properties of relationbetween fuzzy bounded mapping and fuzzy continuous mapping on fuzzy normedspace.
MODEL LOGISTIK FUZZY DENGAN ADANYA PEMANENAN PROPORSIONAL Fitri Nor Annisa; Muhammad Ahsar Karim; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (779.172 KB) | DOI: 10.20527/epsilon.v16i1.5552

Abstract

The logistic growth model with proportional harvesting is a population growth model that takes into account harvesting factors. In real life, not all conditions can be known with certainty, such as different growth rates in each population and harvest rates depending on the needs of the harvester. To overcome these conditions, there is a concept that accommodates the problem of uncertainty, namely the fuzzy concept. This concept can be induced into a logistic model with proportional harvesting which assumes the intrinsic growth rate and the harvest rate is expressed by fuzzy numbers. The purpose of this research is to form a logistic model with fuzzy proportional harvesting, analyze the stability of the model, and form a numerical simulation. This study uses the alpha-cut method to generalize the intrinsic growth rate and harvest rate from crisp numbers to fuzzy numbers, then the Graded Mean Integration Representation (GMIR) method to defuzzify the model, and the linearization method to analyze the stability of the model. The results of this study obtained a logistic model with proportional harvesting. Then the model was developed into a logistic model with fuzzy proportional harvesting by assuming the intrinsic growth rate and the harvest rate expressed by fuzzy numbers. From the model obtained 2 equilibrium points, namely the first equilibrium point is unstable and the second equilibrium point is asymptotically stable under certain conditions. Model simulation is given to show illustration of stability analysis. From the simulation, it can also be shown that the higher the graded mean value, the lower the population.
DIAGNOSA PENYAKIT DEMAM BERDARAH DENGUE DENGAN PENDEKATAN FUZZY Mariyati Mariyati; Muhammad Ahsar Karim; Oni Soesanto
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 7, No 2 (2013): JURNAL EPSILON VOLUME 7 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (247.047 KB) | DOI: 10.20527/epsilon.v7i2.99

Abstract

Dengue Hemorrhagic Fever (DHF) is still one of the major public health problems in Indonesia. This study aims to diagnose dengue fever with fuzzy approach. Fuzzy approach used in this research is fuzzy inference system. The process of this fuzzy inference system consists of three main stages of fuzzification, evaluation of rules and inference, and defuzzification. The inference method used is the Tsukamoto Method. The results stated that the basic rules of fuzzy in diagnosing Dengue Hemorrhagic Fever is formed based on information obtained from the results of consultation with two doctors regarding the diagnosis of DHF and WHO 2009. The basic rules of fuzzy formed that is as many as 483 rules. The results showed that the level of fitting diagnosis of febrile illness bleeding dengue based on the results of fuzzy approach with the diagnosis of the doctors by 77%.
MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING Muhammad Mefta Eryshady; Oni Soesanto; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 1 (2014): JURNAL EPSILON VOLUME 8 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (167.233 KB) | DOI: 10.20527/epsilon.v8i1.104

Abstract

Linear programming is a general model that can be used in problem solving the allocation problem of limited resources optimally. The mathematics model of linear programming consists of two function: objective function and constraint function. Based on the number of objective functions, linear programming is divided into two types: Single Objective Linear Programming and Multi-Objective Linear Programming. Multi Objective Linear Programming which values are defined in the scope of fuzzy is called Multi Objective Fuzzy Linear Programming. To find the optimal solution of the problem, firstly it is divided into a linear program with single objective and solved using the simplex method. This research was carried out by using a literature study. The results of this study indicate that the optimal solution of Multi Objective Fuzzy Linear Programming will be decision variable ()x, that are: 12,,...,nxxx which its values if they are substituted into the constraint function, the results will be consistent with the limits of specified| resources, as well as if they are substituted into the objective function, then it will be obtained the optimal solution of all expected purposes.
APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yuni Yulida; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 3, No 2 (2009): JURNAL EPSILON VOLUME 3 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (157.385 KB) | DOI: 10.20527/epsilon.v3i2.40

Abstract

This paper discusses the determination of existention and solution of linearequation system with two variables written as:a x b y ca x b y ca x b y c    2 2 21 1 where x, y are integers, and n n n a ,a ,,a ,b ,b ,,b ,c ,c ,,c 1 2 1 2 1 2 are non-negativeintegers, using the application of linear congruency
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida; Faisal Faisal; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 2 (2011): JURNAL EPSILON VOLUME 5 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.693 KB) | DOI: 10.20527/epsilon.v5i2.73

Abstract

This paper presents the SIRS epidemic model. Furthermore, the model is investigated the existence of the equilibrium point, and the global stability of the equilibrium point using the function Lyapunov.
ANALISIS BIAYA FUZZY DALAM SISTEM TRANSPORTASI FUZZY FUZZY COST ANALYSIS IN FUZZY TRANSPORTATION SYSTEM Gita Sari Adriani; Pardi Affandi; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 2 (2016): JURNAL EPSILON VOLUME 10 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (237.329 KB) | DOI: 10.20527/epsilon.v10i2.36

Abstract

Dalam kehidupan sehari-hari, baik disadari maupun tidak, orang selalu melakukan optimasi untuk memenuhi kebutuhan. Dari masalah optimasi tersebut, banyak metode maupun teknik yang digunakan. Salah satu metode yang telah berkembang dalam teori optimasi adalah model transportasi fuzzy. Model transportasi fuzzy merupakan salah satu model optimasi yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk ke tempat tujuan secara optimal. Dimana parameter-parameternya seperti nilai permintaan dan penawarannya berupa bilangan fuzzy, sedangkan untuk biaya yang digunakan biasanya bilangan tegas. Penelitian kali ini mengangkat tentang model transportasi fuzzy yang mana semua parameter-parameternya akan dibawa ke dalam bentuk bilangan fuzzy. Tujuan penelitian ini adalah untuk memperoleh solusi penyelesaian analisis biaya fuzzy dalam menggunakan sistem transportasi fuzzy. Adapun metode penelitian, yaitu membawa nilai permintaan, penawaran dan biaya fuzzy kedalam bentuk ????????−???????????????????????? dan ????????−????????????????????????, kemudian mencari solusi awal dan solusi optimal masalah transportasi fuzzy menggunakan metode biaya terkecil dan metode stepping stone. Dari hasil penelitian menunjukkan bahwa analisis biaya fuzzy dapat dijadikan salah satu alternatife tambahan untuk menyelesaikan masalah transportasi fuzzy. Dengan menggunakan penyelesaian analisis biaya fuzzy hasil penyelesaian yang diperoleh lebih optimal dibandingkan dengan tanpa analisis biaya fuzzy.Kata kunci: Model Transportasi, Sistem Transportasi Fuzzy, Analisis Biaya Fuzzy