Claim Missing Document
Check
Articles

Found 13 Documents
Search

A MATHEMATIC MODEL OF TWO MUTUALLY INTERACTING SPECIES WITH MORTALITY RATE FOR THE SECOND SPECIES Annisa Rahayu; Yuni Yulida; Faisal Faisal
TROPICAL WETLAND JOURNAL Vol 3 No 2 (2017): Tropical Wetland Journal
Publisher : Postgraduate Program - Lambung Mangkurat University (ULM Press Academic)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/twj.v3i2.50

Abstract

One of the interactions that occur withinthe ecosystem is the interaction of mutualism. Such mutualism interactions can be modeled into mathematical models. Reddy (2011) study suggests a model of two mutually interacting species that assumes that each species can live without its mutualism partner. In fact, not all mutual species survive without their mutualism pairs. If it is assumed that the second species lives without its mutualism partner, the first species, then the natural growth rate of the second species population will decrease (the mortality rate). The purpose of this research is to explain the model of two mutually interacting species with mortality rate for the second species, to determine the equilibrium point and the type of stability, and to simulate them with several parameters. This research was done by way of literature studies. The result of this research is the model of two mutually interacting species with mortality rate for second species modeled using Nonlinear Differential Equation System. In the model, it was obtained 3 (three) points of equilibrium, with each type and type of stability investigated. Next up from the stability, model simulations were done. Based on several simulations conducted can be seen the value of parameters and initial values affect the population growth of both species. The interaction model of two mutual species will be stable if the first species survive and the second species over time will be extinct.
PENGEMBANGAN PENGENDALIAN KELEMBABAN, TEMPERATUR PADA RUMAH KACA DENGAN PENCATATAN DATA OTOMATIS Faisal Faisal; Iwan Sugriwan; Ade Agung Harnawan
Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika Vol 2, No 1 (2016)
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30870/gravity.v2i1.913

Abstract

Penelitian pengembangan pengendalian kelembaban pada rumah kaca telah selesai dilakukan. Pengembangan alat ini terdiri atas pengukuran kelembaban, temperatur dan intensitas cahaya dan pengendalian kelembaban udara. Sistem alat ukur terdiri dari power supply DC, sensor SHT11, sensor LDR, relay, mikrokontroler ATMega8535, pengkodisi sinyal, LCD karakter 20x2 dan humidifier. Sensor SHT11 terkalibrasi secara digital melalui port B. Sensor LDR dikarakterisasi menggunakan lampu pijar di dalam chamber tidak tembus cahaya, sehingga menghasilkan persamaan karakteristik sensor v = 0,7595ln(I) – 2,2484 volt. Persamaan karakterisasi tersebut diproses melalui program BASCOM AVR untuk mengisi perintah pada mikrokontroler ATMega8535 dalam proses pengukuran secara terus menerus dan menampilkannya pada LCD karakter 20x2 dalam satuan lux dan data disimpan dalam file dengan format *xlsx. Humidifier dihidupkan oleh relay yang dikendalikan oleh mikrokontroler ATMega8535 dengan set poin pengukuran kelembaban udara kurang dari 60%. Rumah kaca yang digunakan berukuran panjang 240 cm, lebar 150 cm, tinggi dinding 200 cm dan tinggi atap 50 cm. Uji pengendalian kelembaban udara berhasil dipertahankan pada kelembaban udara kisaran 60% dengan error rata-rata sebesar 1,9% dari pukul 11.00 WITA sampai dengan 16.00 WITA.
KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN Pardi Affandi; Faisal Faisal; Yuni Yulida
Jurnal Fisika FLUX Vol 12, No 1 (2015): Jurnal Fisika FLUX Edisi Februari 2015
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.354 KB) | DOI: 10.20527/flux.v12i1.1307

Abstract

Banyak  permasalahan yang melibatkan teori sistem dan teori kontrol serta aplikasinya.Beberapa referensi teori yang mengaplikasikan teori kontrol ke dalam masalah inventori. Masalah klasik dalam masalah inventori adalah bagaimana mengatur perubahan permintaan konsumen pada sebuah produk barang jadi. Selain mengalami penurunan ternyata inventori juga bisa mengalami peningkatan, biasanya inventori yang mengalami peningkatan adalah terjadi pada inventori dikarenakan adanya proses produksi yang berlangsung secara terus menerus sedangkan permintaansedikit. Pada saat proses produksi berlangsung secara terus menerus menyebabkan bertambahnya jumlah inventori. Hal ini mengakibatkan terjadinya peningkatan jumlah inventori.Masalah ini salah satunya dapat dimodelkan dan diselesaikan dengan menggunakan teknik kontrol optimal
MODEL MATEMATIKA PADA PENYEBARAN MALARIA DI KALIMANTAN SELATAN Rahmi Hidayati; Faisal Faisal; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 2 (2017): JURNAL EPSILON VOLUME 11 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.352 KB) | DOI: 10.20527/epsilon.v11i2.119

Abstract

Malaria adalah penyakit menular yang disebabkan plasmodium melalui gigitan nyamuk Anopheles betina. Tujuan dari penelitian ini adalah untuk menjelaskan terbentuknya model penyebaran malaria di Kalimantan Selatan, menganalisis dan menginterpretasi tingkat infeksinya. Penelitian ini dilaksanakan dengan mencari data kasus malaria kemudian mengkaji model SIR, menentukan asumsi yang diperlukan, membentuk model SIR, menentukan kestabilan model dan menganalisis tingkat infeksi malaria dengan model matematika. Model penyebaran malaria di Kalimantan Selatan merupakan sistem persamaan diferensial nonlinier. Pada model ini diperoleh dua titik ekuilibrium yaitu bebas penyakit dan titik ekulibrium endemik. Titik ekuilibrium bebas penyakit stabil asimtotik. Setelah dianalisis tingkat infeksi di Kalimantan Selatan untuk setiap kabupaten menggunakan model tersebut, diperoleh tingkat infeksi malaria paling rendah terjadi di Banjarmasin dan paling tinggi terjadi di Kabupaten Balangan. Infeksi malaria mengalami penurunan setiap tahunnya sehingga infeksinya akan hilang seiring berjalannya waktu hal ini menjelaskan bahwa Kalimantan Selatan akan bebas dari infeksi malaria.Kata Kunci : malaria, model SIR, titik ekuibrium, kestabilan, bilangan reproduksi dasar
ANALISIS MODEL PREDATOR-PREY TERHADAP EFEK PERPINDAHAN PREDASI PADA SPESIES PREY YANG BERJUMLAH BESAR DENGAN ADANYA PERTAHANAN KELOMPOK Mursyidah Pratiwi; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 2 (2017): JURNAL EPSILON VOLUME 11 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (199.102 KB) | DOI: 10.20527/epsilon.v11i2.121

Abstract

Model interaksi predasi merupakan model predator prey, dengan spesies predator berinteraksi dengan spesies prey dalam peristiwa makan memakan, dengan kondisi satu spesies populasi predator memangsa satu spesies populasi prey di dua habitat yang berbeda. Dua habitat yang berbeda di sini artinya populasi prey memiliki 2 tempat hidup (habitat), misalnya lokasi 1 dan lokasi 2. Prey mampu bermigrasi diantara dua habitat yang berbeda tersebut, karena suatu kondisi seperti perubahan musim sehingga predator diperbolehkan untuk memilih memangsa prey di habitat yang satu ataupun yang lain, tetapi spesies prey di masing-masing habitat memiliki kemampuan pertahanan kelompok. Pertahanan kelompok prey akan lebih efektif jika jumlah populasinya besar, sehingga predator akan tertarik terhadap habitat dimana spesies prey berjumlah sedikit. Berdasarkan keadaan tersebut, artikel ini akan menjelaskan kembali dalam bentuk model matematika, menentukan kestabilan titik ekuilibrium pada model dan menganalisa terjadinya Bifurkasi Hopf. Hasil yang diperoleh pada model efek perpindahan predasi memiliki 2 titik ekuilibrium salah satu diantaranya mengalami Bifurkasi Hopf.Kata kunci: Predator-prey, titik ekuilibrium, kestabilan ,bifurkasi hopf
HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 1 (2015): JURNAL EPSILON VOLUME 9 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (204.153 KB) | DOI: 10.20527/epsilon.v9i1.4

Abstract

Laplace transform is a transformation method used to solve differential equations. The Laplace transform was first introduced by Pierre Simon Marquas De Laplace, a French mathematician and a professor in Paris. In addition to the Laplace transform, there is also a transformation of the Elzaki transformation which is a special transformation of the Laplace transform. The Elzaki transformation was introduced by Tarig M. Elzaki to find a solution of ordinary differential equations. Generally these two transformations are used to solve linear differential equations, in the transformation process using integral with a range from 0 to ∞. Unlike Elzaki's transformation, the Laplace transform does not have integral integral operators with ???????? variables. The purpose of this research is to find the relationship between Laplace transformation with Elzaki transformation. The result of this research indicates that Elzaki's transformation of a function ???????? (????????) has a relationship with Laplace transformation ie ???????? (????????) = ????????????????????1???????????? while for Laplace transformation ???? (????????) = ???????????? ????1???????????? with ???????? (????????) and ???? (????????) are the Elzaki and Laplace transforms of ???????? (????????), respectively. Based on the above relationship we can obtain the Elzaki transformation properties corresponding to the Laplace transform.
MODEL MATEMATIKA KOMENSALISME ANTARA DUA SPESIES DENGAN SUMBER TERBATAS Friska Erlina; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 1 (2014): JURNAL EPSILON VOLUME 8 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (214.634 KB) | DOI: 10.20527/epsilon.v8i1.102

Abstract

MODEL MATEMATIKA KOMENSALISME ANTARA DUA SPESIES DENGAN SUMBER TERBATAS
MODIFIKASI MODEL SEIR PADA PENYAKIT CAMPAK Sofia Faridatun Nisa; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.24 KB) | DOI: 10.20527/epsilon.v16i1.4649

Abstract

The epidemic models Susceptible, Exposed, Infected and Recovered (SEIR) are used for the spread of diseases that have a latent period (incubation period) which one is measles disease. Latent periods are entered into the Exposed class. Measles itself after the incubation period will experience clinical symptoms consisting of three stages, which are prodromal stage, eruption stage and healing stage. Due to these clinical symptoms, the SEIR model can be modified by dividing the Infected class into two classes, which are Infected Prodromal class and Infected Eruption class. While the healing stage enters Recovered class. The spread of measles can be made into an epidemic model with five classes which are  and . The purpose of this study is to explain the modification of the model, determine and analyze the model's local stability at the equilibrium point of the model and to interpret model simulations with multiple stability-eligible parameter values. The results obtained from this study are modification of  model which is  model. Based on model, two equilibrium points obtained which are disease-free equilibrium points and endemic equilibrium points, which are locally asymtotics stable with conditions. Model simulations are presented to support an explanation of model stability analysis based on stability-meeting parameters
MODEL ARIMA (p, d, q) PADA DATA KEMATIAN IBU HAMIL (STUDI KASUS DI RSUD ULIN BANJARMASIN) Dewi Anggraini; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 3, No 2 (2009): JURNAL EPSILON VOLUME 3 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (222.179 KB) | DOI: 10.20527/epsilon.v3i2.39

Abstract

Time series analysis is a sequence of quantitative observation at a certain timeinterval, such as daily, monthly, yearly, etc. This analysis has been used foridentifying the characteristic, pattern, and model of observed data in the specifiedpast period that leads to predict the future observation values. Applications oftime series analysis include all aspects such as, meteorology, economy, andmedical area. The deaths prevalence of pregnancy women at delivering process isstill very high. This leads to a significant medical problem in Indonesia. In 2003,this case has been reported 20 women, including 3 cases due to blooding, 3 casesdue to eclampsy, and 14 cases due to other factors. This research is conducted togive an appropriate model to predict the deaths of pregnancy women in the future.The method of this research is using purposive sampling technique, which isgathering 72 secondary data of monthly deaths pregnancy women from2003 - 2008 in the midwife room of Ulin Hospital, Banjarmasin. The experimentprocedures are identifying the appropriate ARIMA model to give the trendmonthly deaths description of pregnancy women, and evaluating the fitted ARIMAmodel to forecast monthly deaths of pregnancy women in the future 10 yearsbased on the given historical data.Based on the conducted analysis, it is found that monthly deaths of pregnancywomen between 2003 and 2008 in Ulin Hospital, Banjarmasin has experienceda slightly increase. The data are discrete with monthly expected value equal to0.625, where the smallest and biggest deaths are 0 and 3 people, respectively.Beside this, it has been investigated that ARIMA (0, 0, 0) or ARMA (0, 0) is thebest ARIMA model for this case because it results the minimum value of AICC.
BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 1 (2012): JURNAL EPSILON VOLUME 6 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (187.728 KB) | DOI: 10.20527/epsilon.v6i1.77

Abstract

The Lorenz equation system is the family of Chen's system of equations and systems equation Lu. The system of equations of Lorenz, the system of Chen equations and the system of equations Lu they have three positive parameters. Differences modify the system of equations of Lorenz with the three systems of equations which (Lorenz equation system, Chen equation system, Lu equation system) respectively lies in the second equation. Modification of the system of equations Lorenz has two parameters with one parameter may be negative. In this paper will be analyzed whether or not there is bifurcation. The results of this paper shows the system having subcritical Hopf bifurcation.